题意

给出一张有向无环图,求出用最少的路径覆盖整张图,要求路径在定点处不相交

输出方案

Sol

定理:路径覆盖 = 定点数 - 二分图最大匹配数

直接上匈牙利

输出方案的话就不断的从一个点跳匹配边

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int MAXN = 1e5 + , INF = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int N, M;
vector<int> v[MAXN];
int link[MAXN], vis[MAXN], cnt = ;
bool Arg(int x) {
for(int i = ; i < v[x].size(); i++) {
int to = v[x][i];
if(vis[to] == cnt) continue; vis[to] = cnt;
if(!link[to] || Arg(link[to]))
{link[to] = x; link[x] = to; return ;}
}
return ;
}
int Hunary() {
int ans = ;
for(int i = ; i <= N; i++, cnt++)
if(Arg(i))
ans++;
return ans;
}
int main() {
N = read(); M = read();
for(int i = ; i <= M; i++) {
int x = read(), y = read();
v[x].push_back(y + N);
}
int ans = N - Hunary();
memset(vis, , sizeof(vis));
for(int i = ; i <= N; i++) {
int x = i + N;
if(vis[i]) continue;
do
printf("%d ", x = x - N);
while(vis[x] = , x = link[x]);
puts("");
}
printf("%d", ans);
return ;
}

洛谷P2764 最小路径覆盖问题(二分图)的更多相关文章

  1. 洛谷 P2764 最小路径覆盖问题 解题报告

    P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...

  2. 洛谷P2764 最小路径覆盖问题

    有向无环图的最小路径点覆盖 最小路径覆盖就是给定一张DAG,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点. 有定理:顶点数-路径数=被覆盖的边数. 要理解的话可以从两个方向: 假设DAG已 ...

  3. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  4. 洛谷P2764 最小路径覆盖问题(最大流)

    传送门 先说做法:把原图拆成一个二分图,每一个点被拆成$A_i,B_i$,若原图中存在边$(u,v)$,则连边$(A_u,B_v)$,然后$S$对所有$A$连边,所有$B$对$T$连边,然后跑一个最大 ...

  5. 洛谷 P2764 最小路径覆盖问题【匈牙利算法】

    经典二分图匹配问题.把每个点拆成两个,对于原图中的每一条边(i,j)连接(i,j+n),最小路径覆盖就是点数n-二分图最大匹配.方案直接顺着匹配dsf.. #include<iostream&g ...

  6. 【刷题】洛谷 P2764 最小路径覆盖问题

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  7. 洛谷 P2764(最小路径覆盖=节点数-最大匹配)

    给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别 ...

  8. 洛谷 [P2764]最小路径覆盖问题

    二分图应用模版 #include <iostream> #include <cstdio> #include <algorithm> #include <cs ...

  9. 洛谷-p2764(最小路径覆盖)(网络流24题)

    #include<iostream> #include<algorithm> #include<queue> #include<cstring> #in ...

随机推荐

  1. aop+自定义注解

    自定义注解,并且实现,需要两个文件: 自定义注解类: package com.clc.server.annotation; import java.lang.annotation.ElementTyp ...

  2. Linux时间子系统之四:定时器的引擎:clock_event_device【转】

    本文转载自:http://blog.csdn.net/droidphone/article/details/8017604 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+] ...

  3. bzoj4664: Count

    是bzoj4498: 魔法的碰撞的哥哥题,我只写了一种 不一样的地方在于贡献有负数,第三维要保存的不能仅仅是0~L,这样空间会炸裂 考虑如何把贡献变成正的 假如要求最优解,那么一定是按顺序排,混乱度为 ...

  4. Spring Boot2.0之 整合Redis事务

    Redis事物 Redis 事务可以一次执行多个命令, 并且带有以下两个重要的保证: 事务是一个单独的隔离操作:事务中的所有命令都会序列化.按顺序地执行.事务在执行的过程中,不会被其他客户端发送来的命 ...

  5. 对象数组、集合、链表(java基础知识十五)

    1.对象数组的概述和使用 * 需求:我有5个学生,请把这个5个学生的信息存储到数组中,并遍历数组,获取得到每一个学生信息. Student[] arr = new Student[5]; //存储学生 ...

  6. poj 1469 COURSES 解题报告

    题目链接:http://poj.org/problem?id=1469 题目意思:有 N 个人,P个课程,每一个课程有一些学生参加(0个.1个或多个参加).问 能否使得 P 个课程 恰好与 P 个学生 ...

  7. poj 2771 Guardian of Decency(最大独立数)

    题意:人与人之间满足4个条件之一即不能成为一对(也就说这4个条件都不满足才能成为一对),求可能的最多的单身人数. 思路:把男女分为两部分,接下来就是二分图的匹配问题.把能成为一对的之间连边,然后求出最 ...

  8. maven实战(1)-- maven仓库

    maven仓库配置 转自:http://blog.csdn.net/dongnan591172113/article/details/7685164 1.两类仓库 1.1本地仓库(local repo ...

  9. I.MX6 system.img unpack repack

    /************************************************************************* * I.MX6 system.img unpack ...

  10. 【CAIOJ1177】 子串是否出现

    [题目链接] 点击打开链接 [算法] KMP [代码] #include<bits/stdc++.h> using namespace std; #define MAXA 1000010 ...