1578. 次小生成树初级练习题

☆   输入文件:mst2.in   输出文件:mst2.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

求严格次小生成树

【输入格式】

第一行包含两个整数N 和M,表示无向图的点数与边数。 接下来 M行,每行 3个数x y z 表示,点 x 和点y之间有一条边,边的权值为z。

【输出格式】

包含一行,仅一个数,表示严格次小生成树的边权和。(数据保证必定存在严格次小生成树)

【样例输入】

5 6

1 2 1

1 3 2

2 4 3

3 5 4

3 4 3

4 5 6

【样例输出】

11

【提示】

数据中无向图无自环; 50% 的数据N≤2 000 M≤3 000; 80% 的数据N≤50 000 M≤100 000; 100% 的数据N≤100 000 M≤300 000 ,边权值非负且不超过 10^9 。

【来源】

bzoj。。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 300010
using namespace std;
int n,m,x,y,z,k,sum,tot,num,answer=N,fa[N],ans[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int x,y,z;
}edge[N];
int cmp(Edge a,Edge b)
{
    return a.z<b.z;
}
int find(int x)
{
    if(x==fa[x]) return x;
    fa[x]=find(fa[x]);
    return fa[x];
}
int main()
{
    freopen("mst2.in","r",stdin);
    freopen("mst2.out","w",stdout);
    n=read(),m=read();
    ;i<=m;i++)
    {
        x=read(),y=read(),z=read();
        edge[i].x=x;
        edge[i].y=y;
        edge[i].z=z;
    }
    ;i<=n;i++) fa[i]=i;
    sort(edge+,edge++m,cmp);
    ;i<=m;i++)
    {
        int fx=find(edge[i].x),fy=find(edge[i].y);
        if(fx==fy) continue;
        tot++;fa[fx]=fy;
        ans[tot]=i;sum+=edge[i].z;
        ) break;
    }
    ;i<=tot;i++)
    {
        k=,num=;
        ;j<=n;j++) fa[j]=j;
        sort(edge+,edge++m,cmp);
        ;j<=m;j++)
        {
            if(j==ans[i]) continue;
            int fx=find(edge[j].x),fy=find(edge[j].y);
            if(fx!=fy)
            {
                fa[fx]=fy;
                num++;
                k+=edge[j].z;
            }
            ) break;
        }
        &&k!=sum) answer=min(k,answer);
    }
    printf("%d",answer);
}

cogs——1578. 次小生成树初级练习题的更多相关文章

  1. COGS 1578. 次小生成树初级练习题

    ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式] 第一行包含两个整数N 和M,表 ...

  2. COGS——T 1578. 次小生成树初级练习题

    http://www.cogs.pro/cogs/problem/problem.php?pid=1578 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 ...

  3. cogs P1578【模板】 次小生成树初级练习题

    1578. 次小生成树初级练习题 ☆   输入文件:mst2.in   输出文件:mst2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 求严格次小生成树 [输入格式 ...

  4. [BJOI2010]次小生成树

    OJ题号: BZOJ1977.COGS2453 题目大意: 给你一个无向连通图,求严格次小生成树. 思路: 对于一般次小生成树,我们有一个结论:一般次小生成树一定可以通过替换掉最小生成树某一条边得到. ...

  5. [Luogu] 次小生成树

    https://www.luogu.org/problemnew/show/P4180#sub 严格次小生成树,即不等于最小生成树中的边权之和最小的生成树 首先求出最小生成树,然后枚举所有不在最小生成 ...

  6. HDU 4081Qin Shi Huang's National Road System(次小生成树)

    题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...

  7. POJ1679 The Unique MST[次小生成树]

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28673   Accepted: 10239 ...

  8. The Unique MST(次小生成树)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22335   Accepted: 7922 Description Give ...

  9. URAL 1416 Confidential --最小生成树与次小生成树

    题意:求一幅无向图的最小生成树与最小生成树,不存在输出-1 解法:用Kruskal求最小生成树,标记用过的边.求次小生成树时,依次枚举用过的边,将其去除后再求最小生成树,得出所有情况下的最小的生成树就 ...

随机推荐

  1. [LOJ#10064]黑暗城堡

    Description 在顺利攻破 Lord lsp 的防线之后,lqr 一行人来到了 Lord lsp 的城堡下方.Lord lsp 黑化之后虽然拥有了强大的超能力,能够用意念力制造建筑物,但是智商 ...

  2. svn报错:Cannot negotiate authentication mechanism

    在使用eclipse的svn插件连接osc的代码仓库时候,发生了以下错误: Cannot negotiate authentication mechanismsvn: Unable to connec ...

  3. Linux下磁盘分区、挂载、卸载操作记录

    Linux下磁盘分区.挂载.卸载操作记录. 操作环境:CentOS release 6.5 (Final) Last :: from 118.230.194.76 [root@CentOS ~]# [ ...

  4. [译]libcurl_tutorial

    Handle the Easy libcurl To use the easy interface, you must first create yourself an easy handle. Yo ...

  5. C++学习笔记(一)之指针

    指向指针的引用 ; int * p; int *&r = p; //r为对指针p的引用 r = &i; //r为对p的引用,故对r赋值即将p指向i *r = ; //更新i的值 通过* ...

  6. 用DataReader 分页与几种传统的分页方法的比较

    对于数据库的分页,目前比较传统的方法是采用分页存储过程,其实用 DataReader 也可以实现分页,不需要写存储过程,实现效率上也比几种比较流行的分页方法要略快. 在开始这个方法之前,让我们先创建一 ...

  7. mac下iterm2 设置笔记

    1.利用brew install zsh 来安装oh my zsh 2.chsh -s /bin/zsh,修改~/.zshrc文件 alias cls='clear' alias ll='ls -l' ...

  8. Linux基础之操作系统

    一.什么是操作系统 简单来说,操作系统就是一个协调.管理和控制计算机硬件资源和软件资源的控制程序. 二.操作系统存在的意义 究根结底,我们日常对计算机的管理是对计算机硬件的管理.经过近百年的时间,现代 ...

  9. 反转链表_JAVA

    package algorithms; /* * * * 输入一个链表,反转链表后,输出新链表的表头. * public class ListNode { int val; ListNode next ...

  10. eclipse配置Tomcat服务器server locations的方法

    最近放弃了使用Myeclipse,转而使用eclipse作为开发工具,确实Myeclipse集成了太多东西,使得开发人员的配置越来越少,这不是个好事,使用eclipse后,有些地方就得自己去配置,比如 ...