Spring Boot 与ElasticSearch
一、ElasticSearch 介绍
开源的 ElasticSearch 是目前全文搜索引擎的首选,它是一个分布式搜索服务,提供Restful API,它可以快速地存储、搜索和分析海量数据。底层基于 Lucene,采用多 shard(分片)的方式保证数据安全,并且提供自动 resharding 的功能,github 等大型站点也是采用 ElasticSearch 作为其搜索服务。
ElasticSearch 是面向文档的,它存储整个对象(文档),它使用 JSON 作为文档的序列化格式。一个 ElasticSearch 集群可以包含多个索引,相应的每个索引可以包含多个类型。这些不同的类型存储着多个文档,每个文档又有多个属性。
二、ElasticSearch 快速入门
1、dokcer 安装 ElasticSearch
dokcer pull elasticsearch:6.4.3 # 获取镜像 注意:如果后面整合 spring boot 的话,就要与 spring boot 的版本相对应,我后面创建的 spring boot 项目是 2.1.2 对应的 spring-data-elasticsearch 是 3.1.4,详情参考 springboot 官方:https://github.com/spring-projects/spring-data-elasticsearch 里面的对照表,版本不对应的话,后面用 spring data 使用 ES 的话可能会有问题。
[root@izwz9d74k4cznxtxjeeur9z ~]# docker run -d --name=ES -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms1024M -Xmx1024m" elasticsearch:6.4.3
# 第一个端口是web通信端口,第二个端口是节点通信端口,设置为了单节点模式并规定了运行时最小堆内存为1024M,最大堆内存为1024M(默认情况下,要占将近2个G)
输入 http://服务器地址:9200/,返回 JSON ,运行成功。
2、练习
使用软件 Postman 模拟发送 Restful 请求,练习参考官方文档。
索引雇员文档:第一个业务需求就是存储雇员数据。 这将会以雇员文档的形式存储:一个文档代表一个雇员。存储数据到 Elasticsearch 的行为叫做索引。
发送一个 put 请求,地址:http://x.x.x.x:9200/megacorp/employee/1,内容为:
{
"first_name" : "John",
"last_name" : "Smith",
"age" : 25,
"about" : "I love to go rock climbing",
"interests": [ "sports", "music" ]
}
点击 Send 后,返回响应结果:
将 put 请求变为 get 请求读取下刚索引的雇员文档,返回响应结果如下:
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_version": 1,
"found": true,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
再索引 2 个雇员文档:
PUT /megacorp/employee/2
{
"first_name" : "Jane",
"last_name" : "Smith",
"age" : 32,
"about" : "I like to collect rock albums",
"interests": [ "music" ]
} PUT /megacorp/employee/3
{
"first_name" : "Douglas",
"last_name" : "Fir",
"age" : 35,
"about": "I like to build cabinets",
"interests": [ "forestry" ]
}
Tips:将 HTTP 命令由
PUT
改为GET
可以用来检索文档,同样的,可以使用DELETE
命令来删除文档,以及使用HEAD
指令来检查文档是否存在。如果想更新已存在的文档,只需再次PUT
。
轻量级搜索:
GET /megacorp/employee/_search #获取所有雇员
返回结果:
{
"took": 59,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 1,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 1,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "3",
"_score": 1,
"_source": {
"first_name": "Douglas",
"last_name": "Fir",
"age": 35,
"about": "I like to build cabinets",
"interests": [
"forestry"
]
}
}
]
}
}
搜索姓氏为
Smith
的雇员:GET /megacorp/employee/_search?q=last_name:Smith
表达式搜索:Elasticsearch 提供一个丰富灵活的查询语言叫做 查询表达式 , 它支持构建更加复杂和健壮的查询。如:搜索姓氏为 Smith 的雇员且年龄大于 30,使用过滤器 filter ,它支持高效地执行一个结构化查询。
GET /megacorp/employee/_search
{
"query" : {
"bool": {
"must": {
"match" : {
"last_name" : "smith"
}
},
"filter": {
"range" : {
"age" : { "gt" : 30 }
}
}
}
}
}
全文搜索:Elasticsearch 默认按照相关性得分排序,即每个文档跟查询的匹配程度。
例:搜索下所有喜欢攀岩(rock climbing)的雇员:
GET /megacorp/employee/_search
{
"query" : {
"match" : {
"about" : "rock climbing"
}
}
}
返回 2 条记录,并按照相关性得分排序。
{
"took": 10,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 2,
"max_score": 0.53484553,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.53484553,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
},
{
"_index": "megacorp",
"_type": "employee",
"_id": "2",
"_score": 0.26742277,
"_source": {
"first_name": "Jane",
"last_name": "Smith",
"age": 32,
"about": "I like to collect rock albums",
"interests": [
"music"
]
}
}
]
}
}
短语搜索:它不同于全文搜索,它是精确匹配的。
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
}
}
{
"took": 11,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.53484553,
"hits": [
{
"_index": "megacorp",
"_type": "employee",
"_id": "1",
"_score": 0.53484553,
"_source": {
"first_name": "John",
"last_name": "Smith",
"age": 25,
"about": "I love to go rock climbing",
"interests": [
"sports",
"music"
]
}
}
]
}
}
高亮搜索:自动将匹配到的词语加上高亮标签。
GET /megacorp/employee/_search
{
"query" : {
"match_phrase" : {
"about" : "rock climbing"
}
},
"highlight": {
"fields" : {
"about" : {}
}
}
}
三、Spring Boot 中使用 ElasticSearch
IDEA 通过 Spring Initializr 创建 Spring Boot 项目:
Spring Boot 可以使用下图中标注的方法来使用 ElasticSearch。
使用 jest 方式:
从上图中可知,jest 自动配置类还未生效,需要导入类 JestClient,所以添加 Maven 依赖。
<!-- https://mvnrepository.com/artifact/io.searchbox/jest -->
<dependency>
<groupId>io.searchbox</groupId>
<artifactId>jest</artifactId>
<version>5.3.4</version>
</dependency>配置 jest.uris:
spring.elasticsearch.jest.uris=http://x.x.xx.:9200/
创建一个 Java Bean:
package com.yunche.elasticsearch.bean; import io.searchbox.annotations.JestId; /**
* @ClassName: Article
* @Description:
* @author: yunche
* @date: 2019/02/04
*/
public class Article { @JestId //主键
private Integer id;
private String name;
private String author;
private String content; public Integer getId() {
return id;
} @Override
public String toString() {
return "Article{" +
"id=" + id +
", name='" + name + '\'' +
", author='" + author + '\'' +
", content='" + content + '\'' +
'}';
} public void setId(Integer id) {
this.id = id;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public String getAuthor() {
return author;
} public void setAuthor(String author) {
this.author = author;
} public String getContent() {
return content;
} public void setContent(String content) {
this.content = content;
}
}
单元测试:
package com.yunche.elasticsearch; import com.yunche.elasticsearch.bean.Article;
import io.searchbox.client.JestClient;
import io.searchbox.core.Index;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner; import java.io.IOException; @RunWith(SpringRunner.class)
@SpringBootTest
public class ElasticsearchApplicationTests { @Test
public void contextLoads() {
} @Autowired
JestClient jestClient; /**
* 索引一个文档
*/
@Test
public void indexArticle() {
Article article = new Article();
article.setId(1);
article.setAuthor("火星引力");
article.setName("逆天邪神");
article.setContent("掌天毒之珠,承邪神之血,修逆天之力。一代邪神,君临天下。"); //构建一个索引用于索引
Index index = new Index.Builder(article).index("yunche").type("novels").build(); try {
//索引文档
jestClient.execute(index);
} catch (IOException e) {
e.printStackTrace();
}
}
}方法无异常,获取该文档,结果如下:
/**
* 全文搜索
*/
@Test
public void search() { String query = "{\n" +
" \"query\" : {\n" +
" \"match\" : {\n" +
" \"name\" : \"逆天邪神\"\n" +
" }\n" +
" }\n" +
"}";
Search search = new Search.Builder(query).addIndex("yunche").addType("novels").build(); try {
SearchResult result = jestClient.execute(search);
//打印
for (SearchResult.Hit<Article, Void> hit : result.getHits(Article.class)) {
System.out.println(hit.source);
} /*Output:Article{id=1, name=' 逆天邪神 ', author=' 火星引力 ', content=' 掌天毒之珠,承邪神之血,修逆天之力。一代邪神,君临天下。'}*/ } catch (IOException e) {
e.printStackTrace();
}
}
Spring Data 方式:
application.properties:
spring.data.elasticsearch.cluster-name=docker-cluster # 注意填写名字,通过访问 9200 端口返回的 json 数据里面 "cluster_name"节点
spring.data.elasticsearch.cluster-nodes=x.x.x.x:9300
面向接口的方式:
package com.yunche.elasticsearch.repository; import com.yunche.elasticsearch.bean.Anime;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository; /**
* @ClassName: AnimeRepository
* @Description:
* @author: yunche
* @date: 2019/02/04
*/
public interface AnimeRepository extends ElasticsearchRepository<Anime, Integer> {
}
package com.yunche.elasticsearch.bean; import org.springframework.data.elasticsearch.annotations.Document; /**
* @ClassName: Anime
* @Description:
* @author: yunche
* @date: 2019/02/04
*/
//指定索引、类型
@Document(indexName = "yunche", type = "anime")
public class Anime {
private Integer id;
private String name;
private String summary; public Integer getId() {
return id;
} public void setId(Integer id) {
this.id = id;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public String getSummary() {
return summary;
} public void setSummary(String summary) {
this.summary = summary;
}
}@Autowired
AnimeRepository animeRepository; /**
* 以面向接口的方式使用 ES,
* 索引一个动漫文档
*/
@Test
public void test01() {
Anime anime = new Anime();
anime.setId(1);
anime.setName("五等分的花嫁");
anime.setSummary("一直过着贫困生活的高中二年级学生·上杉风太郎,找到了一份条件非常好的家庭教师兼职。然而,要教导的学生居然是同级生!而且还是五胞胎!!虽然都是美少女,但同时也是“将要留级”、“讨厌学习”的问题学生们!最开始的任务就是要取得这些女孩们的信任……!?每天都热闹喧嚣!中野家的五姐妹所带来的可爱度 500%的五个不一样的恋爱喜剧,就此开幕!!"); animeRepository.index(anime);
}
public interface AnimeRepository extends ElasticsearchRepository<Anime, Integer> {
//类似于 JPA 面向接口,只需定义方法不需要实现
List<Anime> findAnimeByNameLike(String name);
}
/**
* 测试下搜索
*/
@Test
public void test02() {
NativeSearchQuery searchQuery = new NativeSearchQuery(QueryBuilders.matchQuery("summary", "五胞胎 美少女"));
for (Anime anime : animeRepository.search(searchQuery)) {
System.out.println(anime.getSummary());
}
} /**
* 模糊查找
*/
@Test
public void test03() {
for (Anime anime : animeRepository.findAnimeByNameLike("五等分")) {
System.out.println(anime.getSummary());
}
}
ElasticsearchTemplate:
@Autowired
public ElasticsearchTemplate template;
/**
* 索引一个 Anime 文档
*/
@Test
public void test04() {
Anime anime = new Anime();
anime.setId(2);
anime.setName("约会大作战");
anime.setSummary("人类遭遇了名为“空间震”的新型灾害。震荡空间、将一切破坏殆尽的这一灾厄,是由于存在于临界的精灵出现这个世界上时而发生的。为了阻止空间震,使人类免受灾厄而必须采取的措施,是使用武力歼灭精灵,或者是——“与其约会,使其娇羞”!让精灵娇羞,再通过“接吻”即可封印其力量——拥有这种能力的高中生·五河士道,为了人类的和平,也为了拯救精灵们——士道展开了和她们之间的“约会”。对士道敞开心扉的精灵·十香、四糸乃、琴里、耶俱矢、夕弦、美九。为了歼灭精灵而行动的“AST”。企图利用精灵的”DEM”。尝试与精灵和平交流的“拉塔托斯克”。以及,需要令其娇羞的新精灵——围绕着这一切,新的战争(约会)开始了——"); IndexQuery indexQuery = new IndexQueryBuilder().withIndexName("yunche").withType("anime").withId(anime.getId().toString()).withObject(anime).build();
template.index(indexQuery);
}
@Test
public void test05() {
NativeSearchQuery searchQuery = new NativeSearchQueryBuilder().withQuery(QueryBuilders.queryStringQuery("五").field("summary")).build(); for (Anime anime : template.queryForPage(searchQuery, Anime.class)) {
System.out.println(anime.getName());
}
} /*outPut:
五等分的花嫁
约会大作战
*/
四、参考资料
尚硅谷.Spring Boot 高级
Spring Boot 与ElasticSearch的更多相关文章
- Spring Boot整合Elasticsearch
Spring Boot整合Elasticsearch Elasticsearch是一个全文搜索引擎,专门用于处理大型数据集.根据描述,自然而然使用它来存储和搜索应用程序日志.与Logstash和K ...
- spring boot 整合 elasticsearch 5.x
spring boot与elasticsearch集成有两种方式.一种是直接使用elasticsearch.一种是使用data中间件. 本文只指针使用maven集成elasticsearch 5.x, ...
- 【spring boot】【elasticsearch】spring boot整合elasticsearch,启动报错Caused by: java.lang.IllegalStateException: availableProcessors is already set to [8], rejecting [8
spring boot整合elasticsearch, 启动报错: Caused by: java.lang.IllegalStateException: availableProcessors ], ...
- Elasticsearch学习(3) spring boot整合Elasticsearch的原生方式
前面我们已经介绍了spring boot整合Elasticsearch的jpa方式,这种方式虽然简便,但是依旧无法解决我们较为复杂的业务,所以原生的实现方式学习能够解决这些问题,而原生的学习方式也是E ...
- spring boot与ElasticSearch的集成
本文主要介绍Spring boot与ElasticSearch的集成,因为Spring boot的教程以及ElasticSearch的学习其他博客可能更优秀,所以建议再看这篇文章前先学习学习一下Spr ...
- Spring Boot 集成 Elasticsearch 实战
最近有读者问我能不能写下如何使用 Spring Boot 开发 Elasticsearch(以下简称 ES) 相关应用,今天就讲解下如何使用 Spring Boot 结合 ES. 可以在 ES 官方文 ...
- Spring Boot 整合 Elasticsearch,实现 function score query 权重分查询
摘要: 原创出处 www.bysocket.com 「泥瓦匠BYSocket 」欢迎转载,保留摘要,谢谢! 『 预见未来最好的方式就是亲手创造未来 – <史蒂夫·乔布斯传> 』 运行环境: ...
- Spring Boot 整合 elasticsearch
一.简介 我们的应用经常需要添加检索功能,开源的 ElasticSearch 是目前全文搜索引擎的 首选.他可以快速的存储.搜索和分析海量数据.Spring Boot通过整合Spring Data E ...
- ElasticSearch入门3: Spring Boot集成ElasticSearch
第一步:创建项目elasticsearch 编写pom文件 <?xml version="1.0" encoding="UTF-8"?> <p ...
- Elasticsearch学习(4) spring boot整合Elasticsearch的聚合操作
之前已将spring boot原生方式介绍了,接下将结介绍的是Elasticsearch聚合操作.聚合操作一般来说是解决一下复杂的业务,比如mysql中的求和和分组,由于博主踩的坑比较多,所以博客可能 ...
随机推荐
- web 开发之js---js 实现网页中播放wav的一种方法(flash播放器)
http://blog.csdn.net/whumr1/article/details/6948160
- 【poj2774】Long Long Message
用个分隔符将两个字符串连接起来,再用后缀数组求出height数组的值,找出一个height值最大并且i与i-1的sa值分别在两串字符中就好 #include<algorithm> #inc ...
- onload onmouseover 事件监听
<div class="nav"> <ul> <li>翠翠</li> <li>嗯嗯</li> <li& ...
- GCD总结(一)
GCD为我们提供了三种类型的调度队列(dispatch queue),分别为串行,并行和主调度队列. 串行(Serial) 你可以创建任意个数的串行队列,每个队列依次执行添加的任务,一个队列同 ...
- 洛谷P3216 [HNOI2011]数学作业
题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenat ...
- bzoj2989
坐标轴转化+cdq分治 我们发现那个绝对值不太好搞,于是我们把曼哈顿距离转为切比雪夫距离,x'=x-y,y'=x+y,这样两点之间距离就是max(|x1'-x2'|,|y1'-y2'|),这个距离要小 ...
- 4. extjs中form中的frame:true表示什么
转自:https://blog.csdn.net/qiu512300471/article/details/23737217 设置为true时可以为panel添加背景色.圆角边框等,如下图 下面的是f ...
- DNS域名记录
DNS域名记录 DNS数据库 在DNS的解析过程中用到域名的解析资源的记录,这个解析记录在DNS当中称为DNS数据库. 这个数据库又分为正解和反解,正解就是从主机名到ip的过程,反解就是从ip反响解析 ...
- git回到没push的commit
创建: 2017/10/28 merge master以后数据库出了问题,改好以后发现view有点问题,commit以后没提交就reset了.过后才想起来怎么回去???吓成狗,索性找到了下面这个. ...
- bzoj 2100: [Usaco2010 Dec]Apple Delivery【spfa】
洛谷数据好强啊,普通spfa开o2都过不了,要加双端队列优化 因为是双向边,所以dis(u,v)=dis(v,u),所以分别以pa1和pa2为起点spfa一遍,表示pb-->pa1-->p ...