http://acm.hdu.edu.cn/showproblem.php?pid=1018

Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 33695    Accepted Submission(s): 15894

Problem Description
In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.
 
Input
Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 ≤ n ≤ 107 on each line.
 
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 
Sample Input
2
10
20
 
Sample Output
7 19
 
任意一个正整数a的位数等于(int)log10(a) + 1;
对于任意一个给定的正整数a,
假设10^(x-1)<=a<10^x,那么显然a的位数为x位,
又因为
log10(10^(x-1))<=log10(a)<(log10(10^x))
即x-1<=log10(a)<x
则(int)log10(a)=x-1,
即(int)log10(a)+1=x
即a的位数是(int)log10(a)+1
那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
=log10(1*2*3*......n) (根据log10(a*b) = log10(a) + log10(b)有)
=log10(1)+log10(2)+log10(3)+......+log10(n)
总结一下:n的阶乘的位数等于
(int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1

HDU_1018_n(1e7)的阶乘的结果的位数的更多相关文章

  1. HDU 1018 Big Number (阶乘位数)

    题意: 给一个数n,返回该数的阶乘结果是一个多少位(十进制位)的整数. 思路: 用对数log来实现. 举个例子 一个三位数n 满足102 <= n < 103: 那么它的位数w 满足 w ...

  2. HDU 1018(阶乘位数 数学)

    题意是求 n 的阶乘的位数. 直接求 n 的阶乘再求其位数是不行的,开始时思路很扯淡,想直接用一个数组存每个数阶乘的位数,用变量 tmp 去存 n 与 n - 1 的阶乘的最高位的数的乘积,那么 n ...

  3. 斯特林(Stirling)公式 求大数阶乘的位数

    我们知道整数n的位数的计算方法为:log10(n)+1n!=10^m故n!的位数为 m = log10(n!)+1 lgN!=lg1+lg2+lg3+lg4+lg5+................. ...

  4. 单身狗进化——求n!的位数

    题目: 分析: 这道题目要求的是n!的位数,显然一种思路是先求出n!的值,假定为res,然后再计算res的位数,这种方法在n比较小时是可以的,如果res为int型,一旦n>16,res就会超出i ...

  5. CHD 2014迎新杯比赛题解

    A. 草滩的魔法学校 分析: 高精度乘法 或 JAVA大数类 很明显 10000 的阶乘已经远远超过 64 位数能表示的范围了.所以我们要用一个比较大的数组来存放这个数.那数组要开多少位合适呢?我们不 ...

  6. N的阶乘的长度 V2(斯特林近似) 求 某个大数的阶乘的位数 .

    求某个大数的阶乘的位数 . 得到的值  需要 +1 得到真正的位数 斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义.在数学分析中,大多都是利用Г函数.级数和含参变量的积分等 ...

  7. UVA 10061 How many zero's and how many digits ? (m进制,阶乘位数,阶乘后缀0)

    题意: 给出两个数字a和b,求a的阶乘转换成b进制后,输出 (1)后缀中有多少个连续的0? (2)数a的b进制表示法中有多少位? 思路:逐个问题解决. 设a!=k.  k暂时不用直接转成b进制. (1 ...

  8. ACM 阶乘数位数

    描述 N!阶乘是一个非常大的数,大家都知道计算公式是N!=N*(N-1)······*2*1.现在你的任务是计算出N!的位数有多少(十进制)?   输入 首行输入n,表示有多少组测试数据(n<1 ...

  9. 51nod 1058 N的阶乘的长度 位数公式

    1058 N的阶乘的长度基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3.Input输入N( ...

随机推荐

  1. Python 获取新浪微博的热门话题 (API)

    Code: #!/usr/bin/python # -*- coding: utf-8 -*- ''' Created on 2014-06-27 @author: guaguastd @name: ...

  2. 【每日算法】排序算法总结(复杂度&amp;稳定性)

    一.插入排序:稳定,时间复杂度O(n^2) 想象你在打扑克牌,一開始左手是空的,接着右手開始从桌上摸牌,并将其插入到左手的一把牌中的正确位置上.为了找到这个正确位置,我们须要从右到左将它与手中的牌比較 ...

  3. PHP导入和导出CSV文件

    CREATE TABLE `student` ( `id` ) NOT NULL auto_increment, `name` varchar() NOT NULL, `sex` varchar() ...

  4. 2016.3.16__CSS3_选择器_边框_背景_蒙版mask__第九天

    CSS3 假设您认为这篇文章还不错.能够去H5专题介绍中查看很多其它相关文章. 今日课程预览 1. CSS3 的选择器 1.1 子选择器 比如:设置div下一级的p标签的颜色属性 div>p { ...

  5. ionic开发android App

    在win下配置ionic可以参考七月的这篇博客:http://www.cnblogs.com/shikelong/p/4480975.html. 依照七月的思路基本可以创建一个ionic项目了,下面我 ...

  6. 实现一个简易的express中间件

    代码: // 通过闭包实现单例 const Middlewave = (function(){ let instance; class Middlewave{ constructor() { this ...

  7. wxpc

  8. URL 字段简析

    URL:统一资源定位符:URL是uri的一个子集,另外一个子集是URN. URL语法:(来自HTTP权威指南中文版P29) 组件 描述 默认值 方案 访问服务器以获取资源时要使用哪种协议 无 用户 某 ...

  9. ubuntu安装Android Studio

    参考 https://developer.android.com/guide/?hl=zh-CN 下载 https://developer.android.com/studio/?hl=zh-CN 解 ...

  10. 推理集 —— death

    事故: 自杀: 他杀: 1. 跳楼 头向下死得比较快,没那么痛苦. 脚向下,不会立刻死亡,痛苦至极.死亡原因可能不是跳楼,而是失血过多而死 扑下去, 同头向下. 仰着跌下去,同头向下.. 跳楼最好头先 ...