解题思路

要保证图是强连通的,用因为给出的边全部都是双向边。考虑树形的结构,在一棵树上的$N$个节点一定是强连通的。他们都能够互相到达。又要保证树上的$n-1$条边中的最长的一条边最小。那就用Kruskal求一个最小生成树,找出其中的最长边,平方就是答案

附上代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const int maxn = 1e3+;
int n, x[maxn], y[maxn], cnt, tot, f[maxn];
double Ans, d[maxn][maxn];
struct Edge {
int u, v;
double w;
}ed[maxn * maxn];
inline bool cmp(Edge a, Edge b) {
return a.w < b.w;
}
inline int find(int x) {
if(x == f[x]) return x;
else return f[x] = find(f[x]);
}
inline void Kruskal() {
for(int i=; i<=n; i++) f[i] = i;
for(int i=; i<=n; i++) {
for(int j=; j<=n; j++) {
if(i != j) {
++cnt;
ed[cnt].u = i, ed[cnt].v = j, ed[cnt].w = d[i][j];
//printf("%d %d %.2lf\n", ed[cnt].u, ed[cnt].v, ed[cnt].w);
}
}
}
sort(ed+, ed++cnt, cmp);
for(int i=; i<=cnt; i++) {
int xx = find(ed[i].u), yy = find(ed[i].v);
if(xx != yy) {
f[xx] = find(yy);
tot ++;
Ans = ed[i].w;
}
if(tot == n-) {
break;
}
}
} int main() {
scanf("%d", &n);
for(int i=; i<=n; i++) {
scanf("%d%d", &x[i], &y[i]);
}
for(int i=; i<=n; i++) {
for(int j=; j<=n; j++) {
d[i][j] = sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
//printf("%.2lf ", d[i][j]);
}
//printf("\n");
}
Kruskal();
printf("%.0lf", Ans * Ans);
}

Luogu P2847 [USACO20DEC]Moocast(gold)奶牛广播-金的更多相关文章

  1. 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  2. 【Luogu】P1868饥饿的奶牛(DP)

    题目链接 话说我存一些只需要按照一个关键字排序的双元素结构体的时候老是喜欢使用链式前向星…… DP.f[i]表示前i个位置奶牛最多能吃到的草.转移方程如下: f[i]=f[i-]; f[i]=max( ...

  3. 【Luogu P1345】[USACO5.4]奶牛的电信Telecowmunication

    Luogu P1345 很容易发现这题要求的是网络流中的最小割. 关于最小割,我们有最大流最小割定理:最小割的容量一定等于最大流的流量 但是这个定理是用于求最小割边,而题目要求我们求的是最小割点. 那 ...

  4. [USACO2009 NOV GOLD]奶牛的图片

    校内题,不给传送门了. 以前做完NOIp2013的火柴排队那道题后,当时很担心NOIp会出那种题,因为贪心的规则能不能看出来真的要看运气.但是这类题做多了后发现其实那道题的规则其实是很多题都已经用到了 ...

  5. Luogu P1535 【游荡的奶牛】

    搜索不知道为什么没有人写bfs觉得挺像是标准个bfs的 状态因为要统计次数,不能简单地跳过一个被经过的点这样的话,状态量会爆炸采用记忆化设dp[i][j][k]表示在第k分钟到达点(i,j)的方案数以 ...

  6. LUOGU P2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat…

    传送门 解题思路 首先第一遍dfs预处理出每个点的子树的siz,然后可以处理出放在根节点的答案,然后递推可得其他答案,递推方程 sum[u]=sum[x]-(val[i]*siz[u])+(siz[1 ...

  7. USACO比赛题泛刷

    随时可能弃坑. 因为不知道最近要刷啥所以就决定刷下usaco. 优先级排在学习新算法和打比赛之后. 仅有一句话题解.难一点的可能有代码. 优先级是Gold>Silver.Platinum刷不动. ...

  8. NOIP 2006 金明的预算方案

    洛谷 P1064 金明的预算方案 https://www.luogu.org/problem/P1064 JDOJ 1420: [NOIP2006]金明的预算方案 T2 https://neooj.c ...

  9. Word Formation

    构词 Word Formation 1.派生Derivation 2.合成Compounding 3.截短Clipping 4.混合Blending 1派生Derivation 1).前缀 除少数英语 ...

随机推荐

  1. ios19---xib

    // // ViewController.m #import "ViewController.h" @interface ViewController () @end @imple ...

  2. 远程查看日志-linux

    ssh 连接服务器 ssh user@www.xxx.com -p60022 用户名@ip 端口 进入日志所在目录 cat FILENAME 查看文本文件,P.S. 在查较大文件时为了避免刷屏,请使用 ...

  3. 在vs2017中创建Node.js项目

    https://github.com/Microsoft/nodejstools/wiki/Projects 1. 安装vs2017的时候,需要勾选Node.js 2.新建项目的时候,选择其他语言,然 ...

  4. 一位ACMer过来人的心得(转)

    刻苦的训练我打算最后稍微提一下.主要说后者:什么是有效地训练? 我想说下我的理解.很多ACMer入门的时候,都被告知:要多做题,做个500多道就变牛了.其实,这既不是充分条件.也不会是必要条件. 我觉 ...

  5. 如何在Mac OS X 中运行Lua (Running Lua on Mac OS X)

    参考文章:1) http://www.oschina.net/question/12_769552) http://rudamoura.com/luaonmacosx.html 最近在为iOS开发游戏 ...

  6. 错误: 实例 "ruiy" 执行所请求操作失败,实例处于错误状态。: 请稍后再试 [错误: 'ascii' codec can't decode byte 0xe6 in position 0: ordinal not in range(128)].

    错误: 实例 "ruiy" 执行所请求操作失败,实例处于错误状态.: 请稍后再试 [错误: 'ascii' codec can't decode byte 0xe6 in posi ...

  7. java笔记线程方式1获取对象名称

    * 如何获取线程对象的名称呢? * public final String getName():获取线程的名称. * 如何设置线程对象的名称呢? * public final void setName ...

  8. (数论)51NOD 1073 约瑟夫环

    N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数.问最后剩下的人的编号.例如:N = 3,K = 2.2号先出列,然后是1号,最后剩下的是3号.In ...

  9. SSH协议、HTTPS中SSL协议的完整交互过程

    1.(SSH)公私钥认证原理 服务器建立公钥:每一次启动sshd服务时,该服务会主动去找/etc/ssh/ssh_host*的文件 客户端通过ssh工具进行连接,如Xshell,SecureCRT 服 ...

  10. 用Google Cloud Platform搭建***服务教程

    之前FQ一直用的是***,天有不测风云,前几天发现ss服务挂了.更可怕的是ping都ping不通,多方打听,***中文社区已经炸开锅了,原因就是IP被封了.需要付费更换IP.然后到现在还是没有给我更换 ...