洛谷 P 1119 灾后重建
题目背景
B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
题目描述
给出B地区的村庄数N,村庄编号从0到N-1,和所有M条公路的长度,公路是双向的。并给出第i个村庄重建完成的时间t[i],你可以认为是同时开始重建并在第t[i]天重建完成,并且在当天即可通车。若t[i]为0则说明地震未对此地区造成损坏,一开始就可以通车。之后有Q个询问(x, y, t),对于每个询问你要回答在第t天,从村庄x到村庄y的最短路径长度为多少。如果无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未重建完成 ,则需要返回-1。
输入输出格式
输入格式:
输入文件rebuild.in的第一行包含两个正整数N,M,表示了村庄的数目与公路的数量。
第二行包含N个非负整数t[0], t[1], …, t[N – 1],表示了每个村庄重建完成的时间,数据保证了t[0] ≤ t[1] ≤ … ≤ t[N – 1]。
接下来M行,每行3个非负整数i, j, w,w为不超过10000的正整数,表示了有一条连接村庄i与村庄j的道路,长度为w,保证i≠j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是M+3行包含一个正整数Q,表示Q个询问。
接下来Q行,每行3个非负整数x, y, t,询问在第t天,从村庄x到村庄y的最短路径长度为多少,数据保证了t是不下降的。
输出格式:
输出文件rebuild.out包含Q行,对每一个询问(x, y, t)输出对应的答案,即在第t天,从村庄x到村庄y的最短路径长度为多少。如果在第t天无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未修复完成,则输出-1。
输入输出样例
4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
-1
-1
5
4
说明
对于30%的数据,有N≤50;
对于30%的数据,有t[i] = 0,其中有20%的数据有t[i] = 0且N>50;
对于50%的数据,有Q≤100;
对于100%的数据,有N≤200,M≤N*(N-1)/2,Q≤50000,所有输入数据涉及整数均不超过100000。
#include<iostream>
#include<cstring>
#include<cstdio>
#define N 205
#define inf 0x3f3f3f3f
using namespace std;
int Q,n,m,g[N][N],t[N];
int main()
{
scanf("%d%d",&n,&m);
memset(g,0x3f,sizeof(g));
for(int i=;i<n;i++)
scanf("%d",&t[i]);
t[n]=inf;
for(int i=,x,y,z;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
g[x][y]=g[y][x]=z;
}
scanf("%d",&Q);
int u=;
for(int i=;i<Q;++i)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
while(t[u]<=z)
{
for(int i=;i<n;i++)
for(int j=;j<n;j++)
g[i][j]=min(g[i][j],g[i][u]+g[u][j]);
u++;
}
if(t[x]>z||t[y]>z||g[x][y]==inf)
printf("%d\n",-);
else
printf("%d\n",g[x][y]);
}
return ;
}
什么破题啊,大写的鄙视~
洛谷 P 1119 灾后重建的更多相关文章
- [洛谷P1119][codevs1817]灾后重建
题目大意:有n个村庄和一些连通两个村庄的双向道路.每个村庄在一个特定的时间修复.没有修复的村庄不能经过.现在有一系列询问,问两个村庄在t时刻的最短路(如果无法到达或两个村庄本身未修复,输出-1). 解 ...
- 【洛谷P1119】灾后重建
题目大意:给定一个 N 个顶点,M 条边的无向图,每个顶点有一个时间戳,且时间戳大小按照顶点下标大小依次递增,在给定时间 t 时,时间戳严格大于 t 的顶点不能被访问,现在有 Q 次询问,每次询问在给 ...
- 洛谷 1119 灾后重建 Floyd
比较有趣的Floyd,刚开始还真没看出来....(下午脑子不太清醒) 先考虑一下Floyd本身的实现原理, for(k=1;k<=n;k++) for(i=1;i<=n;i++) for( ...
- AC日记——灾后重建 洛谷 P1119
灾后重建 思路: 看到n<=200,思考弗洛伊德算法: 如何floyed呢? floyed是一种动态规划求最短路的算法: 它通过枚举中间点来更新两点之间最短路: 回到这个题本身: 所有点的重建完 ...
- 洛谷——P1119 灾后重建
P1119 灾后重建 题目背景 B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两个重 ...
- 【洛谷P1119题解】灾后重建——(floyd)
这道题告诉我,背的掉板子并不能解决一切问题,理解思想才是关键,比如不看题解,我确实想不清楚这题是弗洛伊德求最短路 (我不该自不量力的说我会弗洛伊德了我错了做人果然要谦虚) 灾后重建 题目背景 B地区在 ...
- 洛谷 P1119 灾后重建 最短路+Floyd算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 总结 题面 题目链接 P1119 灾后重建 题目描述 B地区在地震过后,所有村 ...
- CODEVS 1817 灾后重建 Label:Floyd || 最短瓶颈路
描述 灾后重建(rebuild) B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响.但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车.换句话说,只有连接着两 ...
- java实现第六届蓝桥杯灾后重建
灾后重建 题目描述 Pear市一共有N(<=50000)个居民点,居民点之间有M(<=200000)条双向道路相连.这些居民点两两之间都可以通过双向道路到达.这种情况一直持续到最近,一次严 ...
随机推荐
- Ubuntu16.04下使用sublime text3搭建Python IDE
本来是想用pycharm,但你看它的内存要求,我的虚拟机一共也就1G Vim太别扭了,就算有代码颜色,不能自动对齐,不能规范格式,跳转到函数定义,显示文档,要配置起来太费劲,所以就尝试着用sublim ...
- Android计算器布局
Android(安桌)计算器布局实现 ——解决整个屏幕方案 引言: 学完了android布局的几种方式,做了一个android计算器. 我在网上搜索了这方面的资料,发现了布局都 ...
- WPF知识点全攻略07- 数据绑定(Binding)
数据绑定是WPF不得不提,不得不会系列之一 数据绑定简言之,就是把数据源的数据绑定到目标对象的属性上.目标对象可以是承自DependencyProperty的任何可访问的属性或控件,目标属性必须为依赖 ...
- end和sep的使用方法
end: 默认是换行'\n',表示以什么结尾,比如以, | \n 等 方法: 默认end = '\n' a b c 如果end = ' ' a b c sep: 默认是空格' ' 表示两个字符之间用什 ...
- synchronized 和ReentrantLock的区别
历史知识:JDK5之前,只有synchronized 可以用,之后就有了ReetrantLock可以用了 ReetrantLock (再入锁) 1.位于java.util.concurrnt.lock ...
- EOF与feof
在C语言中,或更精确地说成C标准函数库中表示文件结束符(end of file).在while循环中以EOF作为文件结束标志,这种以EOF作为文件结束标志的文件,必须是文本文件.在文本文件中,数据都是 ...
- 设置tableview的滚动范围--iOS开发系列---项目中成长的知识三
设置tableview的滚动范围 有时候tableview的footerview上的内容需要向上拖动界面一定距离才能够看见, 项目中因为我需要在footerviw上添加一个按钮,而这个按钮又因为这个原 ...
- ios 自定义RadioButton
1 前言 众所周知在IOS中没有单选按钮这一控件,今天我们来学习一下简单的单选控件.类似与Web中的radio表单元素. 2 详述 本控件单纯的利用按钮控件和NSObject的respondsToSe ...
- ios xmpp demo
为了方便程序调用,我们把XMPP的一些主要方法写在AppDelegate中 在AppDelegate.m下这几个方法为: [java] view plaincopy -(void)setupStrea ...
- 新建Maven工程,pom.xml报错web.xml is missing and <failOnMissingWebXml> is set to true
错误原因: 项目中没有web.xml 解决办法: 在项目中添加web.xml 在pom.xml中添加下面的插件 <build> <plugins> <plugin> ...