BZOJ 2179 FFT快速傅立叶 ——FFT
【题目分析】
快速傅里叶变换用于高精度乘法。
其实本质就是循环卷积的计算,也就是多项式的乘法。
两次蝴蝶变换。
二进制取反化递归为迭代。
单位根的巧妙取值,是的复杂度成为了nlogn
范德蒙矩阵计算逆矩阵又减轻了拉格朗日插值法的复杂度。
十分神奇。
【代码】
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath> #include <set>
#include <map>
#include <string>
#include <algorithm>
#include <vector>
#include <iostream>
#include <queue> using namespace std; #define maxn 200005
#define Complex cp
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define mlog 16
#define inf (0x3f3f3f3f) int read()
{
int x=0,f=1; char ch=getchar();
while (ch<'0'||ch>'9') {if (ch=='-') f=-1; ch=getchar();}
while (ch>='0'&&ch<='9') {x=x*10+ch-'0'; ch=getchar();}
return x*f;
} struct cp{
double x,y;//虚数可表示为 x+y*i i^2=-1
cp operator + (cp a) {return (cp){x+a.x,y+a.y};}
cp operator - (cp a) {return (cp){x-a.x,y-a.y};}
cp operator * (cp a) {return (cp){x*a.x-y*a.y,x*a.y+y*a.x};}
}a[maxn],b[maxn],c[maxn]; double pi=acos(-1.0); // π
int n,m,rev[maxn],len,ans[maxn];
char s[maxn]; void FFT(Complex * x,int n,int f)
{
F(i,0,n-1) if (rev[i]>i) swap(x[rev[i]],x[i]); //构造迭代的形式
for (int m=2;m<=n;m<<=1)
{
Complex wn=(Complex){cos(2.0*pi/m*f),sin(2.0*pi/m*f)}; //当前的主单位根
for (int i=0;i<n;i+=m)
{
Complex w=(Complex){1.0,0};
for (int j=0;j<(m>>1);++j)
{
Complex u=x[i+j],v=x[i+j+(m>>1)]*w;//计算对应的多项式的值
x[i+j]=u+v; x[i+j+(m>>1)]=u-v;
w=w*wn;//在复数域中旋转一个角度
}
}
}
} int main()
{
n=read();
scanf("%s",s); F(i,0,n-1) a[i].x=s[n-1-i]-'0';
scanf("%s",s); F(i,0,n-1) b[i].x=s[n-1-i]-'0';
m=1; n=2*n-1;
while (m<=n) m<<=1,len++; n=m;
F(i,0,n-1)
{
int t=i,ret=0;
F(j,1,len) ret<<=1,ret|=t&1,t>>=1;
rev[i]=ret;
}//二进制翻转,便于化分治为循环迭代
FFT(a,n,1); FFT(b,n,1); //FFT
F(i,0,n-1) c[i]=a[i]*b[i];
FFT(c,n,-1); //IFFT
F(i,0,n-1) ans[i]=(c[i].x/n)+0.5;//精度QAQ
F(i,0,n-1) ans[i+1]+=ans[i]/10,ans[i]%=10;//进位QwQ
n++;
while (!ans[n]&&n) n--;
D(i,n,0) printf("%d",ans[i]);
}
BZOJ 2179 FFT快速傅立叶 ——FFT的更多相关文章
- 【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3308 Solved: 1720 Description 给出两个n位 ...
- bzoj 2179: FFT快速傅立叶 -- FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input ...
- 【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include& ...
- bzoj 2179 FFT快速傅立叶 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream& ...
- BZOJ2179:FFT快速傅立叶(FFT)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
- 【bzoj2179】FFT快速傅立叶 FFT
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出 输出一行,即x*y的结果. 样例 ...
- BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring ...
- BZOJ 2179: FFT快速傅立叶
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2923 Solved: 1498[Submit][Status][Di ...
- 【BZOJ2179】FFT快速傅立叶
[BZOJ2179]FFT快速傅立叶 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位 ...
随机推荐
- Lucene全文检索技术学习
---------------------------------------------------------------------------------------------------- ...
- hihoCode r#1077 : RMQ问题再临-线段树
思路: 两种实现方法: (1)用链表(2)用数组. #include <bits/stdc++.h> using namespace std; int n, q, L, R, op, P, ...
- hihoCoder #1068 : RMQ-ST算法(模板)
AC G++ 826ms 146MB 思路: 时间复杂度O(nlogn). //#include <bits/stdc++.h> #include <iostream> #in ...
- 运行powershell 脚本 在此系统上禁止运行脚本
解决方法: 首次在计算机上启动 Windows PowerShell 时,现用执行策略很可能是 Restricted(默认设置). Restricted 策略不允许任何脚本运行. 若要了解计算机上的现 ...
- 粗谈Android未来前景
Andriod作为智能手机机兴起的操作系统,有着非同寻常的地位.而相对于他的竞争对手ios,两大系统各有自身的优缺点,有太多的不同点,但相比较用户体验来说ios略胜一筹. Android系统极具开发性 ...
- JAVA初级必须要搞懂的事项(希望对新手有所帮助)
1 安装JDK=> (1,下载JDK,安装,一般目录为C:\Program Files\Java中:2,通过Dos命令测试JDK是否安装=>java –version命令查看 ...
- 数据倾斜是多么痛?spark作业调优秘籍
目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么? CSDN日报20170703——<从高考到程序员——我一直在寻找答案> [直播]探究L ...
- k8s集群介绍
Kubernetes集群组件 一个典型的Kubernetes集群由多个工作节点和一个集群控制节点,以及一个集群状态存储系统etcd组成.其中Master节点负责整个集群管理工作,为集群提供管理接口,并 ...
- python之list [ 列表 ]
1. 列表是什么? list [ ] 逗号隔开 是一个容器 可以存放任意类型 列表 == 书包 书包里可以放水杯.衣服.袜子.钱包 钱包里可以放钱.身份证件,可以包套包 2. 列表能干什么? 存储大量 ...
- 用jquery操作xml文件
一. xml文件\内容读取 1.读取xml文件 $.get( xmlfile.xml , function (xml){ //xml即为可以读取使用的内容,具体读取见第2点 }); 2.读取xml内容 ...