Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to draw a graph on a paper without lifting your pen, and finally return to the original position. Euler proved that you could do this if and only if the (planar) graph you created has the following two properties: (1) The graph is connected; and (2) Every vertex in the graph has even degree.

Joey's Euler machine works exactly like this. The device consists of a pencil touching the paper, and a control center issuing a sequence of instructions. The paper can be viewed as the infinite two-dimensional plane; that means you do not need to worry about if the pencil will ever go off the boundary.

In the beginning, the Euler machine will issue an instruction of the form (X0, Y0) which moves the pencil to some starting position (X0, Y0). Each subsequent instruction is also of the form (X'Y'), which means to move the pencil from the previous position to the new position (X'Y'), thus draw a line segment on the paper. You can be sure that the new position is different from the previous position for each instruction. At last, the Euler machine will always issue an instruction that move the pencil back to the starting position(X0, Y0). In addition, the Euler machine will definitely not draw any lines that overlay other lines already drawn. However, the lines may intersect.

After all the instructions are issued, there will be a nice picture on Joey's paper. You see, since the pencil is never lifted from the paper, the picture can be viewed as an Euler circuit.

Your job is to count how many pieces (connected areas) are created on the paper by those lines drawn by Euler.

Input

There are no more than 25 test cases. Ease case starts with a line containing an integer N4, which is the number of instructions in the test case. The following N pairs of integers give the instructions and appear on a single line separated by single spaces. The first pair is the first instruction that gives the coordinates of the starting position. You may assume there are no more than 300 instructions in each test case, and all the integer coordinates are in the range (-300, 300). The input is terminated when N is 0.

Output

For each test case there will be one output line in the format

Case x: There are w pieces.,

where x is the serial number starting from 1.

Note: The figures below illustrate the two sample input cases.

Sample Input

5
0 0 0 1 1 1 1 0 0 0
7
1 1 1 5 2 1 2 5 5 1 3 5 1 1
0

Sample Output

Case 1: There are 2 pieces.
Case 2: There are 5 pieces. 题目大意:n个端点的一笔画,第n个端点跟第一个端点重合,它是一条闭合的曲线,求它把平面划分成多少部分。
分析:
欧拉定理:设平面的顶点数、边数、面数分别为V、E、F,则V+F-E=2。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
}; typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
} bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)== && dcmp(a.y-b.y)==);
} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}
double Length(Vector A){return sqrt(Dot(A,A));}
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));} double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;} Vector Rotate(Vector A,double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)//两线段规范相交
{
double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1),
c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)< && dcmp(c3)*dcmp(c4)<;
} bool OnSegment(Point p,Point a1,Point a2)
{
return dcmp(Cross(a1-p,a2-p))== && dcmp(Dot(a1-p,a2-p))<;
} const int maxn=+;
Point P[maxn],V[maxn*maxn]; int main()
{
int n,icase=,i,j,e,c;
while(scanf("%d",&n)== && n)
{
icase++;
for(i=;i<n;i++)
{
scanf("%lf %lf",&P[i].x,&P[i].y);
V[i]=P[i];
}
n--;
//e为边数,c为顶点数
e=c=n;
for(i=;i<n;i++)//找两两线段规范相交的
{
for(j=i+;j<n;j++)
{
if(SegmentProperIntersection(P[i],P[i+],P[j],P[j+]))//两线段规范相交
{
V[c++]=GetLineIntersection(P[i],P[i+]-P[i],P[j],P[j+]-P[j]);
}
}
}
sort(V,V+c);
c=unique(V,V+c)-V;//不重复的顶点数量
for(i=;i<c;i++)//如果点在线段上则加一条边
{
for(j=;j<n;j++)
{
if(OnSegment(V[i],P[j],P[j+])) e++;
}
}
//欧拉定理:v+f-e=2.
printf("Case %d: There are %d pieces.\n",icase,e+-c);
}
return ;
}

LA 3263 平面划分的更多相关文章

  1. 简单几何(求划分区域) LA 3263 That Nice Euler Circuit

    题目传送门 题意:一笔画,问该图形将平面分成多少个区域 分析:训练指南P260,欧拉定理:平面图定点数V,边数E,面数F,则V + F - E =  2.那么找出新增的点和边就可以了.用到了判断线段相 ...

  2. LA 3263 (平面图的欧拉定理) That Nice Euler Circuit

    题意: 平面上有n个端点的一笔画,最后一个端点与第一个端点重合,即所给图案是闭合曲线.求这些线段将平面分成多少部分. 分析: 平面图中欧拉定理:设平面的顶点数.边数和面数分别为V.E和F.则 V+F- ...

  3. LA 3263 (欧拉定理)

    欧拉定理题意: 给你N 个点,按顺序一笔画完连成一个多边形 求这个平面被分为多少个区间 欧拉定理 : 平面上边为 n ,点为 c 则 区间为 n + 2 - c: 思路: 先扫,两两线段的交点,存下来 ...

  4. LA 2797 平面区域dfs

    题目大意:一个平面区域有n条线段,问能否从(0,0)处到达无穷远处(不穿过任何线段) 分析:若两条线段有一个端点重合,这种情况是不能从端点重合处穿过的 的.因此对每个端点延长一点,就可以避免这个问题. ...

  5. POJ 2284 That Nice Euler Circuit (LA 3263 HDU 1665)

    http://poj.org/problem?id=2284 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&a ...

  6. LA 3263 /// 欧拉定理 oj21860

    题目大意: n个端点的一笔画 第n个和第1个重合 即一笔画必定是闭合曲线 输出平面被分成的区域数 欧拉定理 V+F-E=2 即 点数+面数-边数=2 (这里的面数包括了外部) #include < ...

  7. LA 2797 (平面直线图PLSG) Monster Trap

    题意: 平面上有n条线段,一次给出这n条线段的两个端点的坐标.问怪兽能否从坐标原点逃到无穷远处.(两直线最多有一个交点,且没有三线共交点的情况) 分析: 首先说明一下线段的规范相交:就是交点唯一而且在 ...

  8. LA 3263 欧拉定理

    题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  9. LA 3263 好看的一笔画 欧拉几何+计算几何模板

    题意:训练指南260 #include <cstdio> #include <cstring> #include <algorithm> #include < ...

随机推荐

  1. 状态压缩---状态压缩dp第一题

    标签: ACM 题目: Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; ...

  2. Mac上安装Node和NPM【转】

    http://www.jianshu.com/p/20ea93641bda 作为前端开发者,node和npm安装必不可少.然而有时会因为安装新的app(如MacPorts,慎装,它会修改基本环境变量以 ...

  3. Codeforces Round #277.5 (Div. 2)-C. Given Length and Sum of Digits...

    http://codeforces.com/problemset/problem/489/C C. Given Length and Sum of Digits... time limit per t ...

  4. 自己开发一个APP需要多少钱

    广州APP开发公司[启汇网络]经常遇到有开发定制APP软件需求的企业,通常第一句问的就是“开发一款APP需要多少钱”,在做完客户行业的市场调查后,再了解客... 广州APP开发公司[启汇网络]经常遇到 ...

  5. Lucene入门基础教程

    http://www.linuxidc.com/Linux/2014-06/102856.htm

  6. vue父子传值的具体应用

    最近我负责的项目已经迭代到第四版了,我作为一个没啥经验的小菜鸟也成长了很多. 在这一版开发开始之前,我老大就要求我在开发过程中尽量实现组件化,因此,我也遇到了很多问题,但基本都解决了,所以趁周末把这些 ...

  7. react 组件架构

    容器型组件(container component) 含有抽象数据而没有业务逻辑的组件 负责管理数据和业务逻辑,不负责 UI 的呈现 带有内部状态 展示型组件(presentational compo ...

  8. SVN 如何提交 SO 库文件

    今天提交代码时候发现,svn add 还是 svn st 均查看不到想要提交的 so 文件. 后来才知道原来是配置文件出了问题,把so文件的提交给屏蔽掉了. 修改步骤如下: 1.Ubuntu 系统,点 ...

  9. 剑指Offer(书):反转链表

    题目:输入一个链表,反转链表后,输出新链表的表头. 分析:要分清他的前一个节点和后一个节点,开始的时候前节点为null,后节点为head.next,之后,反转. public ListNode Rev ...

  10. 杭电 5748 Bellovin

    Description Peter has a sequence  and he define a function on the sequence -- , where  is the length ...