acm.hdu.edu.cn/showproblem.php?pid=3037

【题意】

  • m个松果,n棵树
  • 求把最多m个松果分配到最多n棵树的方案数
  • 方案数有可能很大,模素数p
  • 1 <= n, m <= 1000000000, 1 < p < 100000

【思路】

  • 答案为C(n+m,m)%p
  • 对于C(n, m) mod p。这里的n,m,p(p为素数)都很大的情况。就不能再用C(n, m) = C(n - 1,m) + C(n - 1, m - 1)的公式递推了。这里用到Lucas定理。

  • 下面证明为什么答案是C(n+m,m):

  • 把i个松果分配到最多n棵树的方案数是:C(i+n-1,i)(相当于x1+x2+......+xn=i的解的个数,用插板法,插n-1个板,共i+n-1个位置选i个1,因为xi可能是0,所以满足最多n棵树)
  • 现在就需要求不大于m的,相当于对i = 0,1...,m对C(n+i-1,i)求和,根据公式C(n,k) = C(n-1,k)+C(n-1,k-1)得

    C(n-1,0)+C(n,1)+...+C(n+m-1,m)

    = C(n,0)+C(n,1)+C(n+1,2)+...+C(n+m-1,m)

    = C(n+m,m)

【AC】

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll; ll n,m,p; ll fpow(ll x,ll n,ll p)
{
ll res=;
while(n)
{
if(n&) res=(res*x)%p;
x=(x*x)%p;
n>>=;
}
return res;
}
ll Comb(ll n,ll m,ll p)
{
if(n<m) return ;
if(n==m) return ;
m=min(m,n-m);
ll lm=,ln=;
for(ll i=;i<m;i++)
{
lm=(lm*(m-i))%p;
ln=(ln*(n-i))%p;
}
ll ans=ln*fpow(lm,p-,p)%p;
return ans;
}
ll Lucas(ll n,ll m,ll p)
{
ll ans=;
while(n&&m&&ans)
{
ans=(ans*Comb(n%p,m%p,p))%p;
n/=p;
m/=p;
}
return ans;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld",&n,&m,&p);
n+=m;
ll ans=Lucas(n,m,p);
printf("%lld\n",ans);
}
return ;
}

Lucas模板

【组合数+Lucas定理模板】HDU 3037 Saving的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

  3. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  4. uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT)

    uoj86 mx的组合数 (lucas定理+数位dp+原根与指标+NTT) uoj 题目描述自己看去吧( 题解时间 首先看到 $ p $ 这么小还是质数,第一时间想到 $ lucas $ 定理. 注意 ...

  5. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  6. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  7. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  8. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  9. 【(好题)组合数+Lucas定理+公式递推(lowbit+滚动数组)+打表找规律】2017多校训练七 HDU 6129 Just do it

    http://acm.hdu.edu.cn/showproblem.php?pid=6129 [题意] 对于一个长度为n的序列a,我们可以计算b[i]=a1^a2^......^ai,这样得到序列b ...

随机推荐

  1. MySQL性能优化奇技淫巧

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引.   2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使 ...

  2. LR中操中MySQL脚本模板

    Action(){ char chQuery[128]; MYSQL *Mconn; int result; //引入mysql动态链接库 lr_load_dll("libmysql.dll ...

  3. 洛谷 P2947 [USACO09MAR]仰望Look Up

    题目描述 Farmer John's N (1 <= N <= 100,000) cows, conveniently numbered 1..N, are once again stan ...

  4. 原创 :xftp SFTP子系统申请已拒绝 请确保SSH链接的SFTP子系统设置有效

    在出现这个错误时候 如果你的远程连接没有问题 那么就执行下面的命令 service sshd restart 搞定!

  5. sparkmlib-相关系数

    一.基本原理 在stat包中实现了皮尔逊(Pearson)与 斯皮尔曼(Spearman)两类相关系数的计算 (1)Pearson:   (x,y)协方差/[(x标准方差)*(y标准方差)] 详情可以 ...

  6. .net MVC下跨域Ajax请求(CORS)

    二.CROS (Cross-origin Resource Sharing) CROS相当于一种协议,由浏览器.服务端共同完成安全验证,进行安全的跨域资源共享.对于开发人员来说就跟在本站AJAX请求一 ...

  7. struts2的单个文件上传

    本文主要两种方式,一:通过 FileUtils.copyFile(file, savefile);方法复制:二:通过字节流方式复制 web.xml <?xml version="1.0 ...

  8. linux的less命令

    less 在查看之前不会加载整个文件.可以尝试使用 less 和 vi 打开一个很大的文件,你就会看到它们之间在速度上的区别. 在 less 中导航命令类似于 vi.本文中将介绍一些导航命令以及使用 ...

  9. js函数式编程(三)-compose和pointFree

    compose即函数嵌套组合 组合compose在第一篇已经初见端倪,可以感受一下.compose函数的实现用闭包的方法.不完善实现如下: const compose = (f, g) => { ...

  10. c++:printf和cout那个更好更快些

    现在群里在讨论cout和printf那个快的问题,但我个人觉得printf好: 因为:printf对于一些数据大,以及保留小数位,字符……可以显示出明显的优势如“%s %d %c…………” 虽然pri ...