http://acm.hdu.edu.cn/showproblem.php?pid=5884

参考:https://www.cnblogs.com/jhz033/p/5879452.html

【题意】

n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少。

【思路】

k越大,代价越小,二分k,check k

对于每个k,问题转化为n个结点的最优k叉树,用堆做时间复杂度为O(nlogn),再加上二分总复杂度是O(nlogn^2)

然后T了。。。听说加输入挂可以卡过去

正解是这样的:

原数组排序,预处理时间复杂度O(nlogn)

然后求最优k叉树,用一个队列维护合并后的值,而不需要加入原来的堆里重排序(利用新加入的内结点本身的单调性),每次时间复杂度为O(n)

O(nlogn)+O(logn)*O(n),所以最后时间复杂度是O(nlogn)

n个结点不一定能构成最优k叉树,需要补 k-1-((n-1)%(k-1))个权为0的虚结点。

 #include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
int n;
ll t;
const int maxn=1e5+;
ll a[maxn];
bool judge(int mid){
int cnt=(n-)/(mid-);
queue<ll> Q;
if((n-)%(mid-)!=){
cnt++;
for(int i=;i<(mid--(n-)%(mid-));i++){
Q.push();
}
}
ll ans=;
int l=;
while(cnt--){
ll tmp=;
for(int i=;i<mid;i++){
if(!Q.empty()&&(l>=n||Q.front()<=a[l])){
tmp+=Q.front();
Q.pop();
}else{
tmp+=a[l++];
}
}
ans+=tmp;
Q.push(tmp);
}
if(ans<=t) return true;
return false;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%lld",&n,&t);
for(int i=;i<n;i++){
scanf("%lld",&a[i]);
}
sort(a,a+n);
int l=,r=n;
while(l<=r){
int mid=(l+r)>>;
if(judge(mid)){
r=mid-;
}else{
l=mid+;
}
}
printf("%d\n",l);
}
return ;
}
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
int n;
ll t;
const int maxn=1e5+;
ll a[maxn];
bool judge(int mid){
queue<ll> Q1,Q2;
for(int i=;i<n;i++) Q1.push(a[i]);
if((n-)%(mid-)!=){
for(int i=;i<(mid--(n-)%(mid-));i++){
Q2.push();
}
}
ll ans=;
while(Q1.size()+Q2.size()>=mid){
ll tmp=;
for(int i=;i<mid;i++){
if(Q1.empty()&&!Q2.empty()){
tmp+=Q2.front();
Q2.pop();
}else if(Q2.empty()&&!Q1.empty()){
tmp+=Q1.front();
Q1.pop();
}else if(!Q1.empty()&&!Q2.empty()){
if(Q1.front()<=Q2.front()){
tmp+=Q1.front();
Q1.pop();
}else{
tmp+=Q2.front();
Q2.pop();
}
}
}
// cout<<tmp<<endl;
ans+=tmp;
Q2.push(tmp);
}
if(ans<=t) return true;
return false;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%d%lld",&n,&t);
for(int i=;i<n;i++){
scanf("%lld",&a[i]);
}
sort(a,a+n);
int l=,r=n;
while(l<=r){
int mid=(l+r)>>;
if(judge(mid)){
r=mid-;
}else{
l=mid+;
}
}
printf("%d\n",l);
}
return ;
}

【最优K叉树】hdu 5884 Sort的更多相关文章

  1. HDU 5884 Sort ——(K叉哈夫曼树)

    这题真心比较奥义,先见这个人的博客:http://blog.csdn.net/libin66/article/details/52565484 补0的方法是使得其满足成为满K叉树,而其博客中所说的“所 ...

  2. HDU 5884 Sort(二分答案+计算WPL的技巧)

    Sort Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  3. HDU 5884 Sort (二分+k叉哈夫曼树)

    题意:n 个有序序列的归并排序.每次可以选择不超过 k 个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问 k最小是多少. 析:首先二分一下这个 k .然后在给定 k 的情况下, ...

  4. HDU 5884 Sort (二分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5884 nn个有序序列的归并排序.每次可以选择不超过kk个序列进行合并,合并代价为这些序列的长度和.总的 ...

  5. HDU 5884 Sort(二分+优先队列)

    http://acm.hdu.edu.cn/showproblem.php?pid=5884 题意:有个屌丝设计了一个程序,每次可以将k个数组进行合并,代价为这k个数组总的长度之和.现在另外一个屌丝要 ...

  6. HDU 5884 Sort

    二分,验证. 二分$k$,然后进行验证.有一个地方需要注意一下:如果$n$个数,每次合并$k$个,最后一次不能合$k$个,那么一开始需要补$0$之后再合并才是最优的.合并的时候用优先队列合并时间复杂度 ...

  7. HDU 5884 Sort(2016年青岛网络赛 G 二分+贪心+小优化)

    好题 题意:给你n<=100000个数,每个数范围[0,1000],然后给你一个最大的代价T,每次最多合并k个数成为一个数,代价为k个数的总和.问最后合成1个数的总代价不大于T的最小k 题解:我 ...

  8. HDU - 5884 Sort (二分答案+贪心)

    有n个数字,你需要把这n个数字合成一个数字,每次只能把k个数字合并成一个,花费为这k个数字的和. 给一个最大花费,问不超过这个最大花费的情况下,k的最小值. Sample Input 1 5 25 1 ...

  9. 贪心(哈夫曼树):HDU 5884 sort

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2QAAAKACAIAAAB8KCy/AAAgAElEQVR4nOy9a5Adx3UmWL+kHxuekU ...

随机推荐

  1. Android程序初体验

    第一个程序的实现的最终功能是: 点击"正确"或者"错误"会得到一个是否正确的提示. 直接上效果图.     此次涉及代码编写的文件有4个: package co ...

  2. 如何计算CDS view里两个时间戳之间的天数间隔

    ABAP透明表里的时间戳,数据类型为dec: 有个需求:计算这两个时间戳之间的天数间隔,丢弃时间戳年-月-日8位后面的小时:分钟:秒. 举个例子:如果时间戳是20180918173132,丢弃1731 ...

  3. python代理检测

    import socket,threading,os,sys,queue,re socket.setdefaulttimeout(5) path=sys.path[0] if os.path.isfi ...

  4. 强化学习_Deep Q Learning(DQN)_代码解析

    Deep Q Learning 使用gym的CartPole作为环境,使用QDN解决离散动作空间的问题. 一.导入需要的包和定义超参数 import tensorflow as tf import n ...

  5. vue2.0的变化

    1. 在每个组件模板,不在支持片段代码 组件中模板: 之前: <template> <h3>我是组件</h3><strong>我是加粗标签</st ...

  6. C#中Lock关键字的使用

    C# 中的 Lock 语句通过隐式使用 Monitor 来提供同步功能.lock 关键字在块的开始处调用 Enter,而在块的结尾处调用 Exit. 通常,应避免锁定 public 类型,否则实例将超 ...

  7. github+hexo+themes搭建简易个性主题博客

    0x00  install Node.js and git 安装Node.js:http://www.runoob.com/nodejs/nodejs-install-setup.html 安装git ...

  8. PAT (Basic Level) Practise (中文)-1029. 旧键盘(20)

    PAT (Basic Level) Practise (中文)-1029. 旧键盘(20) http://www.patest.cn/contests/pat-b-practise/1029 旧键盘上 ...

  9. Bootstrap历练实例:响应式导航栏

    响应式的导航栏 为了给导航栏添加响应式特性,您要折叠的内容必须包裹在带有 classes .collapse..navbar-collapse 的 <div> 中.折叠起来的导航栏实际上是 ...

  10. please upgrade your plan to create a new private reposiory

    请升级你的计划来创建一个新的私人仓库 提交仓库到github,要公开,除非买他们服务,所以把勾去掉就好了keep this code private