POJ3641 (快速幂) 判断a^p = a (mod p)是否成立
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2
10 3
341 2
341 3
1105 2
1105 3
0 0
Sample Output
no
no
yes
no
yes
yes 如果p是素数,输出no;如果p不是素数,判断a^p对p取余是否等于a。
#include<cstdio>
#include<math.h>
__int64 f(__int64 a,__int64 b)
{
__int64 c=b,t=;
while(b)
{
if(b % != )
{
t=t*a%c;
}
a=a*a%c;
b/=;
}
return t%c;
}
__int64 f2(__int64 a)
{
__int64 i;
if(a <= || a % == ) return ;
for(i=;i<=sqrt(a);i++)
{
if(a % i == ) return ;
}
return ;
}
int main()
{ __int64 p,a;
while(scanf("%I64d %I64d",&p,&a) && p && a)
{
if(f2(p) == ) printf("no\n");
else
{
if(f(a,p) == a) printf("yes\n");
else
printf("no\n");
} }
}
POJ3641 (快速幂) 判断a^p = a (mod p)是否成立的更多相关文章
- 算法竞赛进阶指南--快速幂,求a^b mod p
// 快速幂,求a^b mod p int power(int a, int b, int p) { int ans = 1; for (; b; b >>= 1) { if (b &am ...
- 快速幂(51Nod1046 A^B Mod C)
快速幂也是比较常用的,原理在下面用代码解释,我们先看题. 51Nod1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. In ...
- (分治法 快速幂)51nod1046 A^B Mod C
1046 A^B Mod C 给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. 收起 输入 3个正整数A B C,中间用空格分隔.(1 < ...
- POJ3641(快速幂)
Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8529 Accepted: 35 ...
- XTU 1260 - Determinant - [2017湘潭邀请赛A题(江苏省赛)][高斯消元法][快速幂和逆元]
是2017江苏省赛的第一题,当时在场上没做出来(废话,那个时候又不懂高斯消元怎么写……而且数论也学得一塌糊涂,现在回来补了) 省赛结束之后,题解pdf就出来了,一看题解,嗯……加一行再求逆矩阵从而得到 ...
- URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)
题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...
- [CSP-S模拟测试]:随(快速幂+数学)
题目描述 给出$n$个正整数$a_1,a_2...a_n$和一个质数mod.一个变量$x$初始为$1$.进行$m$次操作.每次在$n$个数中随机选一个$a_i$,然后$x=x\times a_i$.问 ...
- uva 10710 快速幂取模
//题目大意:输入一个n值问洗牌n-1次后是不是会变成初始状态(Jimmy-number),从案例可看出牌1的位置变化为2^i%n,所以最终判断2^(n-1)=1(mod n)是否成立#include ...
- POJ3641 Pseudoprime numbers(快速幂+素数判断)
POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...
随机推荐
- Oracle异机恢复
RMAN异机恢复注意事项:1.RMAN 异机恢复的时候,db_name必须相同. 如果说要想改成其他的实例名,可以在恢复成功后,用nid 命令修改. 实例名的信息会记录到控制文件里,所以如果在恢复的时 ...
- EL表达式(详解)
EL表达式 1.EL基本内容 1)语法结构 ${expression} 2)[]与.运算符 EL 提供.和[]两种运算符来存取数据. 当要存取的属性名称中包含一些特殊 ...
- 《windows核心编程系列》十九谈谈使用远程线程来注入DLL。
windows内的各个进程有各自的地址空间.它们相互独立互不干扰保证了系统的安全性.但是windows也为调试器或是其他工具设计了一些函数,这些函数可以让一个进程对另一个进程进行操作.虽然他们是为调试 ...
- [SPOJ375]Qtree
Description You are given a tree (an acyclic undirected connected graph) with N nodes, and edges num ...
- Ignatius and the Princess III HDU - 1028 || 整数拆分,母函数
Ignatius and the Princess III HDU - 1028 整数划分问题 假的dp(复杂度不对) #include<cstdio> #include<cstri ...
- 转 Docker和hadoop
2017-06-21 朱洁 Docker很热,怎么形容?感觉开源除了spark技术,就是docker了,甚至把Go语言也带火了,把Go在TIOBE的排名从百名外带入主流语言的行列. Docker快成救 ...
- 223 Rectangle Area 矩形面积
在二维平面上计算出两个由直线构成的矩形叠加覆盖后的面积. 假设面积不会超出int的范围. 详见:https://leetcode.com/problems/rectangle-area/descrip ...
- UWP Windows10开发获取设备位置(经纬度)
1.首先要在UWP项目的Package.appxmanifest文件中配置位置权限,如下图所示: 2.Package.appxmanifest后选择第三个选项卡,勾选位置权限(Location) 打开 ...
- ReactJS-2-props vs state
rops理解: 大多数组件都可以在创建的时候被不同的参数定制化,这些不同的参数就叫做props.props的流向是父组件到子组件. 子组件Comment,是一条评论组件,父组件CommentList, ...
- java中字节和字符的转换操作
package com.ywx.io; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputSt ...