题目描述 Description

设r是个2k进制数,并满足以下条件:

(1)r至少是个2位的2k进制数。

(2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位。

(3)将r转换为2进制数q后,则q的总位数不超过w。

在这里,正整数k(1≤k≤9)和w(k<W< span>≤30000)是事先给定的。

问:满足上述条件的不同的r共有多少个?

我们再从另一角度作些解释:设S是长度为w 的01字符串(即字符串S由w个“0”或“1”组成),S对应于上述条件(3)中的q。将S从右起划分为若干个长度为k 的段,每段对应一位2k进制的数,如果S至少可分成2段,则S所对应的二进制数又可以转换为上述的2k进制数r。

例:设k=3,w=7。则r是个八进制数(23=8)。由于w=7,长度为7的01字符串按3位一段分,可分为3段(即1,3,3,左边第一段只有一个二进制位),则满足条件的八进制数有:

2位数:高位为1:6个(即12,13,14,15,16,17),高位为2:5个,…,高位为6:1个(即67)。共6+5+…+1=21个。

3位数:高位只能是1,第2位为2:5个(即123,124,125,126,127),第2位为3:4个,…,第2位为6:1个(即167)。共5+4+…+1=15个。

所以,满足要求的r共有36个。

输入描述 Input Description

只有1行,为两个正整数,用一个空格隔开:

k W

输出描述 Output Description

共1行,是一个正整数,为所求的计算结果,即满足条件的不同的r的个数(用十进制数表示),要求最高位不得为0,各数字之间不得插入数字以外的其他字符(例如空格、换行符、逗号等)。

(提示:作为结果的正整数可能很大,但不会超过200位)

样例输入 Sample Input

3 7

样例输出 Sample Output

36

/*
杨辉三角
强力爆空间,只能用char类型了
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define M 600
using namespace std;
int k,w;
struct node
{
char ch[];int len;
node()
{
memset(ch,,sizeof(ch));
}
};node ans,c[M][M];
node jia(node x,node y)
{
node de;
de.len=max(x.len,y.len);
for(int i=;i<=de.len;i++)
{
de.ch[i]+=x.ch[i]+y.ch[i];
de.ch[i+]+=de.ch[i]/;
de.ch[i]%=;
}
if(de.ch[de.len+]!=)de.len++;
return de;
}
int poww(int a,int b)
{
int base=a,r=;
while(b)
{
if(b&)r*=base;
base*=base;
b/=;
}
return r;
}
void init()
{
int t=poww(,k);
for(int i=;i<=t;i++)
for(int j=;j<=i;j++)
if(j==i||j==)
{
c[i][j].ch[]=;
c[i][j].len=;
}
else c[i][j]=jia(c[i-][j],c[i-][j-]);
}
int main()
{
scanf("%d%d",&k,&w);
init();
int n=w/k,yu=;
if(n<){printf("");return ;}
if(w%k!=)
{
int temp=w-k*n;n++;
for(int i=;i<temp;i++)
yu+=poww(,i);
}
for(int i=;i<=n;i++)
if(i!=n) ans=jia(ans,c[poww(,k)-][i]);
else if(!yu) ans=jia(ans,c[poww(,k)-][n]);
else if(yu)
{
for(int j=;j<=yu;j++)
ans=jia(ans,c[poww(,k)--j][n-]);
}
for(int i=ans.len;i>=;i--)
printf("%d",ans.ch[i]);
return ;
}

2k进制数(codevs 1157)的更多相关文章

  1. 【b604】2K进制数

    Time Limit: 1 second Memory Limit: 50 MB [问题描述] 设r是个2K进制数,并满足以下条件: (1)r至少是个2位的2K进制数. (2)作为2K进制数,除最后一 ...

  2. NOIP2006 2k进制数

    2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换 ...

  3. [codevs1157]2^k进制数

    [codevs1157]2k进制数 试题描述 设r是个2k 进制数,并满足以下条件: (1)r至少是个2位的2k 进制数. (2)作为2k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ...

  4. noip2006 2^k进制数

    设r是个2k进制数,并满足以下条件: (1)r至少是个2位的2k进制数. (2)作为2k进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后,则q的总位数不超过w ...

  5. 一本通1649【例 2】2^k 进制数

    1649:[例 2]2^k 进制数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...

  6. 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)

    题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...

  7. 洛谷P1066 2^k进制数

    P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...

  8. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  9. [转]as3 算法实例【输出1 到最大的N 位数 题目:输入数字n,按顺序输出从1 最大的n 位10 进制数。比如输入3,则输出1、2、3 一直到最大的3 位数即999。】

    思路:如果我们在数字前面补0的话,就会发现n位所有10进制数其实就是n个从0到9的全排列.也就是说,我们把数字的每一位都从0到9排列一遍,就得到了所有的10进制数. /** *ch 存放数字 *n n ...

随机推荐

  1. 转 Docker 组件如何协作?- 每天5分钟玩转容器技术(8)

    http://www.cnblogs.com/CloudMan6/p/6774519.html 记得我们运行的第一个容器吗?现在通过它来体会一下 Docker 各个组件是如何协作的. 容器启动过程如下 ...

  2. js和 php 介绍

    转 1. 在公司项目的改造当中,经常会遇到js与php的函数互调的情况,而实际上JS与php的设计者是不提倡这两种语言直接进行调用的,一个是客户端语言,一个服务端语言,两者之间的交互往往靠的是ajax ...

  3. 转 Oracle Transportable TableSpace(TTS) 传输表空间 说明

    ############1   迁移数据库的集中方法 三.相关技术 迁移方式 优势 不足1 Export and import • 对数据库版本,以及系统平台没有要求 • 不支持并发,速度慢• 停机时 ...

  4. SQL Server Management Studio 手动导入Excel文件

    SQL Server Management Studio(企业管理器) 手动导入Excel文件,有时间还是非常方便的,省去了写代码的麻烦. 具体步骤如下: 下面附上 创建游标的方法(用于循环读取临时表 ...

  5. nginx for windows 安装

    一.nginx for windows 的安装地址: http://nginx.org/en/download.html 二.nginx 安装地址: http://nginx.org/en/docs/ ...

  6. ESSENTIALS OF PROGRAMMING LANGUAGES (THIRD EDITION) :编程语言的本质 —— (一)

    # Foreword> # 序 This book brings you face-to-face with the most fundamental idea in computer prog ...

  7. mysql执行语句汇总

    插入select的数据 INSERT INTO `test1`( order_id, goods_id, goods_name, goods_sn, product_id, goods_number, ...

  8. postgresql update from

    1,update   from   关联表的更新 update table a set name=b.name from table B b  where a.id=b.id; update test ...

  9. bash - GNU Bourne-Again SHell

    概述(SYNOPSIS) bash [options] [file] 版权所有(COPYRIGHT) Bash is Copyright (C) 1989-2002 by the Free Softw ...

  10. 使用webpack+vue.js构建前端工程化

    参考文章:https://blog.csdn.net/qq_40208605/article/details/80661572 使用webpack+vue.js构建前端工程化本篇主要介绍三块知识点: ...