还是没有理解透原根……题目提示其实挺明显的,M是质数,然后1<=x<=M-1

这种计数就容易想到生成函数,但是生成函数是加法,而这里是乘法,所以要想办法变成加法

首先因为0和任何数乘都是0,和其他数规则不相符,所以不考虑(答案也没让求)

然后看原根的性质,设g是M的原根,那么\( g^i%M 0<=i<M-1 \)就是1~M-1的不重集合,所以可以把乘法变成原根指数的加法,这样就变成多项式乘法了,可以用NTT优化

然后n非常大,所以使用快速幂进行多项式乘法

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=20005,mod=1004535809,g=3;
int n,m,x,k,s[N],d=2,id[N],lm,bt,re[N];
long long a[N],c[N],r[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void jia(long long &x,long long &y)
{
x+=y;
x>=mod?x-=mod:0;
}
long long ksm(long long a,long long b,int mod)
{
long long r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
void dft(long long a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
long long wi=ksm(g,(mod-1)/(2*i),mod);
if(f==-1)
wi=ksm(wi,mod-2,mod);
for(int k=0;k<lm;k+=(i<<1))
{
long long w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=((x+y)%mod+mod)%mod,a[i+j+k]=((x-y)%mod+mod)%mod;
w=w*wi%mod;
}
}
}
if(f==-1)
{
long long inv=ksm(lm,mod-2,mod);
for(int i=0;i<lm;i++)
a[i]=a[i]*inv%mod;
}
}
void ntt(long long a[],long long b[])
{
for(int i=0;i<lm;i++)
c[i]=b[i];
dft(a,1);
dft(c,1);
for(int i=0;i<lm;i++)
a[i]=a[i]*c[i]%mod;
dft(a,-1);
for(int i=m-1;i<lm;i++)
jia(a[i%(m-1)],a[i]),a[i]=0;
// for(int i=0;i<lm;i++)
// cerr<<a[i]<<" ";cerr<<endl;
}
int main()
{
n=read()-1,m=read(),x=read(),k=read();
for(int i=1;i<=k;i++)
s[i]=read();
for(bool fl=0;!fl;d++)
{
fl=1;
for(int i=1;i<m-1;i++)
if(ksm(d,i,m)==1)
{
fl=0;
break;
}
if(ksm(d,m-1,m)!=1)
fl=0;
if(fl)
break;
}
for(int i=0;i<m-1;i++)
id[ksm(d,i,m)]=i;//,cerr<<rl[i]<<" "<<i<<endl;
for(int i=1;i<=k;i++)
if(s[i])
a[id[s[i]]]++,r[id[s[i]]]++;
for(bt=0;(1<<bt)<=2*m;bt++);
lm=(1<<bt);
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
while(n)
{
if(n&1)
ntt(r,a);
ntt(a,a);
n>>=1;
}
printf("%lld\n",r[id[x]]);
return 0;
}

bzoj 3992: [SDOI2015]序列统计【原根+生成函数+NTT+快速幂】的更多相关文章

  1. 2018.12.31 bzoj3992: [SDOI2015]序列统计(生成函数+ntt+快速幂)

    传送门 生成函数简单题. 题意:给出一个集合A={a1,a2,...as}A=\{a_1,a_2,...a_s\}A={a1​,a2​,...as​},所有数都在[0,m−1][0,m-1][0,m− ...

  2. BZOJ3992 [SDOI2015]序列统计 【生成函数 + 多项式快速幂】

    题目 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生成了许多这样的数列.但是小C有一个问题 ...

  3. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  4. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  5. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  6. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  7. BZOJ.3992.[SDOI2015]序列统计(DP NTT 原根)

    题目链接 \(Description\) 给定\(n,m,x\)和集合\(S\).求\(\prod_{i=1}^na_i\equiv x\ (mod\ m)\)的方案数.其中\(a_i\in S\). ...

  8. bzoj 3992 [SDOI2015]序列统计——NTT(循环卷积&&快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 有转移次数.模M余数.方案数三个值,一看就是系数的地方放一个值.指数的地方放一个值.做 ...

  9. bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8 ...

随机推荐

  1. react 使用 moment 进行 日期格式化

    在react中使用得先导入: import moment from 'moment'; 调用: npm install moment var moment = require('moment'); m ...

  2. Android用户界面设计:基本button

    Android用户界面设计:基本button 本文向你展示了在你的Android应用程序中创建一个简单的Button或ImageButton控件的步骤. 首先.你会学到怎样向你的布局文件里加入butt ...

  3. Django-权限信息初始化

    数据库 from django.db import models class Menu(models.Model): """ 菜单组: """ ...

  4. vue 安装与起步

    vue安装: 1.官网下载vue,在script标签里引用(去下载) 2.使用CDN(建议下载到本地,不推荐这种方法): BootCDN:https://cdn.bootcss.com/vue/2.2 ...

  5. Apache Qpid CPP的编译与安装

    单机Broker部署(windows/linux) 在Windows/Linux上部署QPID Broker的方法. Windows 需要预先准备的文件和程序 qpid-cpp-0.32.tar.gz ...

  6. TC SRM 583 DIV 2

    做了俩,rating涨了80.第二个题是关于身份证的模拟题,写的时间比较长,但是我认真检查了... 第三个题是最短路,今天写了写,写的很繁琐,写的很多错. #include <cstring&g ...

  7. java sleep和wait的区别和联系

    Thread.sleep不会改变锁的行为,如果当前线程拥有锁,那么当前线程sleep之后,该锁不会被释放. Thread.sleep和Object.wait都会暂停当前的线程,让出cpu.Thread ...

  8. REST RPC HTTP vs 高性能二进制协议 序列化和通信协议

    edisonchou https://mp.weixin.qq.com/s/-XZXqXawR-NxJMPCeiNsmg .NET Core微服务之服务间的调用方式(REST and RPC) Edi ...

  9. (28)java web的hibernate使用

    Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个全自动的orm框架,hibernate可以自动生成SQL语句,自 ...

  10. ajax访问json文件缓存问题

    ajax访问json文件,json文件改动,访问的时候也不能及时看到改动后的内容. 这是因为浏览器缓存的原因. 在这时候就需要清除浏览器的缓存或者加上一个标记,让ajax访问文件的时候知道这是一个新的 ...