#include<opencv2\core\core.hpp>
#include<opencv2\highgui\highgui.hpp>
#include<opencv2\opencv.hpp>
#include<iostream>
#include<fstream> using namespace std;
using namespace cv; #define Max 100 class Cell{
private:
int pixel_x; //cell的像素的起始位置行坐标;
int pixel_y; //cell的像素的起始位置纵坐标;
Mat img; //待处理的图像,通常该该图像是经过Gamma校正的灰度图;
double pixel[][]; //我们一般默认cell为8*8的像素大小,但是为了储存周边店的像素,需要多加两个像素储存点的位置;
double gradient_M[][]; //保存梯度的幅值;
double gradient_Angle[][]; //保存像素梯度的方向;
double gradient_h[][];
double gradient_v[][]; public:
double bin[]; //将梯度方向分成九个方向,在根据具体像素梯度的方向大小,进行投票;
Cell(Mat src){ //构造函数;
img=src;
} void Set_Cell(int x,int y);
void Get_Pixel(); //为了计算机使用方便,我们把一个cell当中的像素先读下来,用pixel[][]数组储存;
void Gradient_Pixel(); //计算机图像像素的梯度幅值和梯度角度;
void Bin_Selection_Normalization(); //根据每个像素的幅值进行维度的区分和归一化,并且返回bin[]数组;
}; void Cell::Set_Cell(int x,int y){
pixel_x=x;
pixel_y=y;
} void Cell::Get_Pixel(){
for(int i=pixel_x-,m=;i<pixel_x+;i++,m++){
uchar *data=img.ptr<uchar>(i);
for(int j=pixel_y-,n=;j<pixel_y+;j++,n++){
pixel[m][n]=data[j];
}
}
// for(int i=0;i<9;i++){
// for(int j=0;j<9;j++){
// cout<<i<<j<<" "<<pixel[i][j]<<"\n";
// }
// }
} void Cell::Gradient_Pixel(){
for(int i=;i<;i++){
for(int j=;j<;j++){
gradient_h[i][j]=pixel[i+][j]-pixel[i-][j];
gradient_v[i][j]=pixel[i][j+]-pixel[i][j-];
gradient_M[i][j]=sqrt(gradient_h[i][j]*gradient_h[i][j]+gradient_v[i][j]*gradient_v[i][j]);
gradient_Angle[i][j]=atan2(gradient_h[i][j],gradient_v[i][j])*;
}
} // for(int i=0;i<9;i++){
// for(int j=0;j<9;j++){
// cout<<i<<j<<" "<<gradient_h[i][j]<<" "<<gradient_v[i][j]<<" "<<gradient_M[i][j]<<" "<<gradient_Angle[i][j]<<"\n";
// }
// }
} void Cell::Bin_Selection_Normalization(){
for(int i=;i<;i++){
bin[i]=;
} for(int i=;i<;i++){
for(int j=;j<;j++){
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<)){
bin[]=bin[]+gradient_M[i][j];
}
if((gradient_Angle[i][j]>=&&gradient_Angle[i][j]<=)||(gradient_Angle[i][j]>=&&gradient_Angle[i][j]<=)){
bin[]=bin[]+gradient_M[i][j];
}
}
}
////////////////////////////////////
//归一化;
double sum_bin=;
for(int i=;i<;i++){
sum_bin=sum_bin+bin[i];
}
for(int i=;i<;i++){
bin[i]=bin[i]/sum_bin;
if(bin[i]>0.2){
bin[i]=0.2;
}
}
sum_bin=;
for(int i=;i<;i++){
sum_bin=sum_bin+bin[i];
}
for(int i=;i<;i++){
bin[i]=bin[i]/sum_bin;
}
}
//Block类部分****************
class Block{
int block_pixel_x; //block的起始像素点横坐标位置;
int block_pixel_y; //block的起始像素点纵坐标位置;
Mat src; //图像必须是灰度图;
double bins[]; //该类主要是对block进行相关处理,我们默认block为四个cell,即2*2;所以bins为36维;
int k; public:
Block(Mat img){
src=img;
k=;
} void Set_Block(int x,int y);
void Cut_Block(); //本人认为这是整个算法当中比较重要的一部分,即图像切割划分部分;
void Block_into_HistImage();
void output_bins();
}; void Block::Set_Block(int x,int y){
block_pixel_x=x;
block_pixel_y=y;
} void Block::Cut_Block(){
k=;
Cell cell(src);
for(int i=block_pixel_x, m=;m<;i=i+,m++){
for(int j=block_pixel_y, n=;n<;j=j+,n++){
cell.Set_Cell(i,j);
cell.Get_Pixel();
cell.Gradient_Pixel();
cell.Bin_Selection_Normalization();
for(int i=;i<;i++){
bins[k++]=cell.bin[i];
}
}
}
} void Block::Block_into_HistImage(){ //该部分算法是将bins生成直方图;
int hight=;
int width=;
IplImage *hist_image=cvCreateImage(Size(,),,);
for(int i=;i<;i++){
cvRectangle(hist_image,CvPoint(i*,hight-),CvPoint((i+)*-,hight-bins[i]*),CV_RGB(,,));
} cvNamedWindow("",);
cvShowImage("",hist_image);
cvWaitKey();
} void Block::output_bins(){
//ofstream out ("1.txt");
for(int i=;i<;i++){
cout<<bins[i]<<"\n";
}
cout<<"*******************************************\n";
} int main(){
Mat img=imread("G:/2.png",); //载入图片;
if(img.empty())
{
return -;
}
Mat gray1;
Mat gray;
cvtColor(img,gray1,COLOR_RGB2GRAY);
resize(gray1,gray,Size(,),,,);
namedWindow("gray",);
imshow("gray",gray);
// cvWaitKey(0);
Block block(gray);
for(int i=,m=;m<;m++,i=i+){
for(int j=,n=;n<;n++,j=j+){
block.Set_Block(i,j);
block.Cut_Block();
//block.Block_into_HistImage();
block.output_bins();
}
}
}

Opencv学习之路——自己编写的HOG算法的更多相关文章

  1. opencv学习笔记(七)SVM+HOG

    opencv学习笔记(七)SVM+HOG 一.简介 方向梯度直方图(Histogram of Oriented Gradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子 ...

  2. Opencv学习之路—Opencv下基于HOG特征的KNN算法分类训练

    在计算机视觉研究当中,HOG算法和LBP算法算是基础算法,但是却十分重要.后期很多图像特征提取的算法都是基于HOG和LBP,所以了解和掌握HOG,是学习计算机视觉的前提和基础. HOG算法的原理很多资 ...

  3. OpenCV 学习之路(2) -- 操作像素

    本节内容: 访问像素值 用指针扫描图像 用迭代器扫描图像 编写高效的图像扫描循环 扫描图像并访问相邻像素 实现简单的图像运算 图像重映射 访问像素值 准备工作: 创建一个简单函数,用它在图像中加入椒盐 ...

  4. OpenCV 学习之路(1)

    OpenCV的第一个代码: #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #i ...

  5. opencv学习之路(41)、人脸识别

    一.人脸检测并采集个人图像 //take_photo.cpp #include<opencv2/opencv.hpp> using namespace cv; using namespac ...

  6. opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH

    一.人脸识别算法之特征脸方法(Eigenface) 1.原理介绍及数据收集 特征脸方法主要是基于PCA降维实现. 详细介绍和主要思想可以参考 http://blog.csdn.net/u0100066 ...

  7. opencv学习之路(39)、PCA

    一.PCA理论介绍 网上已经有许多介绍pca原理的博客,这里就不重复介绍了.详情可参考 http://blog.csdn.net/zhongkelee/article/details/44064401 ...

  8. opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量

    本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...

  9. opencv学习之路(37)、运动物体检测(二)

    一.运动物体轮廓椭圆拟合及中心 #include "opencv2/opencv.hpp" #include<iostream> using namespace std ...

随机推荐

  1. Linux下的画图软件

    Pinta是一款和windows下的画图相类似打一款画图软件,并且它还包含了一些基本的图像编辑工具. 比如:标尺.图层.操作历史记录.图像调整.渲染效果等等,可以满足对图像处理要求不太高的用户的基本需 ...

  2. svn 运行clear up 失败的解决的方法

    SVN 的clear up命令失败的解决方法   1. 下载  sqlite3.exe  文件,放到d盘根文件夹. (能够到这里下载   http://download.csdn.net/detail ...

  3. postgis经常使用函数介绍(一)

    概述: 在进行地理信息系统开发的过程中,经常使用的空间数据库有esri的sde,postgres的postgis以及mySQL的mysql gis等等,在本文.给大家介绍的是有关postgis的一些经 ...

  4. js将图片转为base64编码,以字符串传到后台存入数据库

    (前台在中approve_edit.html中,后台不变) 链接参考:http://www.cnblogs.com/Strom-HYL/p/6782176.html 该链接文中并没有用到easyUI的 ...

  5. Android指纹识别深入浅出分析到实战

    指纹识别这个名词听起来并不陌生,但是实际开发过程中用得并不多.Google从Android6.0(api23)开始才提供标准指纹识别支持,并对外提供指纹识别相关的接口.本文除了能适配6.0及以上系统, ...

  6. 将canvas画布内容转化为图片(toDataURL(),创建url)

    将canvas画布内容转化为图片(toDataURL(),创建url) 总结 1.现在的浏览器都支持右键另存为图片的方法来将canvas画布内容转化为图片 2.在代码里面可以通过toDataURL() ...

  7. [BZOJ 3126] Photo

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3126 [算法] 差分约束系统 注意SPFA判负环的条件应为 : 若所有点入队次数之和 ...

  8. Coursera Algorithms Programming Assignment 5: Kd-Trees (98分)

    题目地址:http://coursera.cs.princeton.edu/algs4/assignments/kdtree.html 分析: Brute-force implementation. ...

  9. Linux进程状态查询

    进程状态详细说明 Linux进程状态详细解析 ps 的参数说明 ps 提供了很多的选项参数,常用的有以下几个:        l 长格式输出:        u 按用户名和启动时间的顺序来显示进程:  ...

  10. PCB Genesis脚本 C#调用Javascript

    曾经用node.js测试写Genesis脚本失败了,这次借助开发PCB规则引擎的机会(基于JS V8引擎与.net深度交互性), 验证一下Javascript是否可用于写Genesis脚本. 一.测试 ...