传送门

D. Clique Problem
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The clique problem is one of the most well-known NP-complete problems. Under some simplification it can be formulated as follows. Consider an undirected graph G. It is required to find a subset of vertices C of the maximum size such that any two of them are connected by an edge in graph G. Sounds simple, doesn't it? Nobody yet knows an algorithm that finds a solution to this problem in polynomial time of the size of the graph. However, as with many other NP-complete problems, the clique problem is easier if you consider a specific type of a graph.

Consider n distinct points on a line. Let the i-th point have the coordinate xi and weight wi. Let's form graph G, whose vertices are these points and edges connect exactly the pairs of points (i, j), such that the distance between them is not less than the sum of their weights, or more formally: |xi - xj| ≥ wi + wj.

Find the size of the maximum clique in such graph.

Input

The first line contains the integer n (1 ≤ n ≤ 200 000) — the number of points.

Each of the next n lines contains two numbers xi, wi (0 ≤ xi ≤ 109, 1 ≤ wi ≤ 109) — the coordinate and the weight of a point. All xi are different.

Output

Print a single number — the number of vertexes in the maximum clique of the given graph.

Sample test(s)
Input
4
2 3
3 1
6 1
0 2
Output
3
Note

If you happen to know how to solve this problem without using the specific properties of the graph formulated in the problem statement, then you are able to get a prize of one million dollars!

The picture for the sample test.

题意:

选出一个最大的集合,集合里面的点两两之间满足:|xi - xj| ≥ wi + wj.

题解:

贪心,先按x排序。设xj<xi<xk

若xi-xj>=wi+wj;

xk-xi>=wk+wi;

则xk-xj>=wk+wj+2*wi>=wk+wj。

故相邻的点之间满足条件,则所有点均满足条件。

继续,xi-xj>=wi+wj; 等价于 xi-wi>=xj+wj;

即前一个点的x+w的和要尽可能小。

1.若当前点与前一个点满足条件,则ans++,xnow=x[i],wnow=w[i];

2.若与前一个点不满足条件,则看 x+w的和的关系,若x+w<xnow+wnow,由于x是递增关系,x-w必然更大,则与前一个点满足条件的集合,肯定也与当前点满足。

故舍弃前一个点,取当前点xnow=x[i],wnow=w[i];  反之,舍弃当前点。

10349119 2015-03-19 16:14:45 njczy2010 D - Clique Problem GNU C++ Accepted 93 ms 1384 KB
 #include <cstdio>
#include <cstring>
#include <stack>
#include <vector>
#include <algorithm>
#include <queue>
#include <map>
#include <string>
#include <set> #define ll long long
int const N = ;
int const M = ;
int const inf = ;
ll const mod = ; using namespace std; int n;
int xnow,wnow;
int ans; typedef struct
{
int x;
int w;
}PP; PP p[N]; bool cmp(PP a,PP b)
{
return a.x<b.x;
} void ini()
{
ans=;
int i;
for(i=;i<=n;i++){
scanf("%d%d",&p[i].x,&p[i].w);
}
sort(p+,p++n,cmp);
} void solve()
{
int i;
ans=;
xnow=p[].x;
wnow=p[].w;
for(i=;i<=n;i++){
if(p[i].x-xnow>=p[i].w+wnow){
xnow=p[i].x;
wnow=p[i].w;
ans++;
}
else{
if(p[i].x+p[i].w<xnow+wnow){
xnow=p[i].x;
wnow=p[i].w;
}
}
}
} void out()
{
printf("%d\n",ans);
} int main()
{
// freopen("data.in","r",stdin);
//scanf("%d",&T);
//for(cnt=1;cnt<=T;cnt++)
while(scanf("%d",&n)!=EOF)
{
ini();
solve();
out();
}
}

Codeforces Round #296 (Div. 2) D. Clique Problem [ 贪心 ]的更多相关文章

  1. Codeforces Round #296 (Div. 1) B. Clique Problem 贪心

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces Round #296 (Div. 1) B - Clique Problem

    B - Clique Problem 题目大意:给你坐标轴上n个点,每个点的权值为wi,两个点之间有边当且仅当 |xi - xj| >= wi + wj, 问你两两之间都有边的最大点集的大小. ...

  3. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路

    Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xx ...

  5. Codeforces Round #367 (Div. 2) C. Hard problem

    题目链接:Codeforces Round #367 (Div. 2) C. Hard problem 题意: 给你一些字符串,字符串可以倒置,如果要倒置,就会消耗vi的能量,问你花最少的能量将这些字 ...

  6. Codeforces Round #603 (Div. 2) A. Sweet Problem(水.......没做出来)+C题

    Codeforces Round #603 (Div. 2) A. Sweet Problem A. Sweet Problem time limit per test 1 second memory ...

  7. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  8. Codeforces Round #296 (Div. 1) E. Triangles 3000

    http://codeforces.com/contest/528/problem/E 先来吐槽一下,一直没机会进div 1, 马力不如当年, 这场题目都不是非常难,div 2 四道题都是水题! 题目 ...

  9. Codeforces Round #361 (Div. 2) C.NP-Hard Problem

    题目连接:http://codeforces.com/contest/688/problem/C 题意:给你一些边,问你能否构成一个二分图 题解:二分图:二分图又称作二部图,是图论中的一种特殊模型. ...

随机推荐

  1. 笔记《精通css》第2章 选择器,注释

    第2章    选择器,注释 1.常用选择器(id选择器,类选择器,类型选择器,后代选择器,伪类选择器(文档结构之外)) 通用选择器(*{    }) 高级选择器(子选择器,相邻同胞选择器,属性选择器) ...

  2. 【HEVC简介】DB-DeBlock Filter

    参考论文:HEVC Deblocking Filter <HEVC标准介绍.HEVC帧间预测论文笔记>系列博客,目录见:http://www.cnblogs.com/DwyaneTalk/ ...

  3. 51nod 1272 最大距离

    题目来源: Codility 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 给出一个长度为N的整数数组A,对于每一个数组元素,如果他后面存在大于等 ...

  4. Devops 技术图谱

  5. Android(java)学习笔记185:多媒体之设置全屏的方法

    在实际的应用程序开发中,我们有时需要把 Activity 设置成全屏显示,一般情况下,可以通过两种方式来设置全屏显示效果.其一,通过在代码中可以设置,其二,通过manifest配置文件来设置全屏. 其 ...

  6. vue点击时动态改变样式 ------- 最简单的方法

    vue点击时动态改变样式 template中 <li :class="{ active:index==isActive }" @click="changeValue ...

  7. 解决Invalid bound statement (not found)(Mybatis的Mapper绑定问题)

    一.问题描述 使用mybatis的项目在本地可以正常运行,但当使用maven或Jenkins打包部署到服务器上时出现了绑定错误,异常信息为: org.apache.ibatis.binding.Bin ...

  8. Sql Server 中锁的概念(2)

    1.一般大家都对事务的四种隔离模式比较熟悉,从松到严依次是: - 读取未提交(Read uncommitted):处于此模式下可能会出现脏读.幻象读.不可重复读 - 读取已提交(Read commit ...

  9. 标准库中的智能指针shared_ptr

    智能指针的出现是为了能够更加方便的解决动态内存的管理问题.注:曾经记得有本书上说可以通过vector来实现动态分配的内存的自动管理,但是经过试验,在gcc4.8.5下是不行的.这个是容易理解的,vec ...

  10. openjudge-1664 放苹果

    总时间限制: 1000ms 内存限制: 65536kB 描述 把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法. 输 ...