题目大意:圆盘上顺次安放0, 1, 2, …, n – 1的点,每次给出两个点需要连边,可以选择在圆盘的正面连边或在圆盘的反面连边,问是否存在一种方案使得所有连线不相交?

思路:本问题可以等价成:圆盘上原本有N条线,每条线在正反面都有画上,将在正反面的两条线只保留一根,问是否存在一种方案使得所有连线不相交?

这样问题就成了赤果果的2-SAT问题了,注意到两条线如果都在正面会相交,那么都在反面也会相交,因此构图时应是无向图,按照2-SAT的形式构完图后,用TARJAN求缩点,由于在一个SCC中的点都是必定同时存在的,所以当一个线的正面和反面所代表的点在一个SCC中时,即可判定不存在这样的连线方法,充分性的证明略

#include<iostream>

#include<cstdio>

#include <math.h>

#define maxn 90000

#define min(x,y) ((x)<(y)?(x):(y))

inta[maxn],b[maxn],head[maxn],point[maxn],next[maxn],dfn[maxn],stack[maxn],now=0;

bool instack[maxn];

intcount=0,num=1,belong[maxn],low[maxn],top=0;

void insert(int x,int y)

{

next[++now]=head[x];

head[x]=now;

point[now]=y;

}

void tarjan(int k)

{

int u;

instack[k]=true;

stack[++top]=k;

dfn[k]=low[k]=++num;

for(int i=head[k];i!=0;i=next[i])

{

u=point[i];

if (dfn[u]==0)

{

tarjan(u);

low[k]=min(low[k],low[u]);

}

else if (instack[u])low[k]=min(low[k],dfn[u]);

}

if (low[k]==dfn[k])

{

++count;

do

{

u=stack[top--];

instack[u]=false;

belong[u]=count;

}while(u!=k);

}

}

int main()

{

int n,m,temp,flag=0;

scanf("%d%d",&n,&m);

for(int i=1;i<=m;i++)

{

scanf("%d%d",&a[i],&b[i]);

if (a[i]>b[i]){temp=a[i];a[i]=b[i];b[i]=temp;}

}

for (int i=1;i<=m-1;i++)//build graph

{

for(int j=i+1;j<=m;j++)

{

if ((a[i]<a[j] && b[j]>b[i]&&a[j]<b[i])||(a[i]>a[j] && b[j]<b[i]&&a[i]<b[j]))

{

insert(i*2,j*2+1);insert(j*2+1,i*2);

insert(i*2+1,j*2);insert(j*2,i*2+1);

}

}

}

for (int i=1;i<=2*m;i++)if (dfn[i]==0)tarjan(i);

for(int i=1;i<=m;i++)if (belong[i*2]==belong[i*2+1]){flag=1;break;}

if (flag==0)printf("panda is telling the truth...\n");

else printf("the evil panda is lying again\n");

return 0;

}

poj3207:Ikki's Story IV-Panda's Trick【2-sat tarjan】的更多相关文章

  1. POJ3207 Ikki's Story IV - Panda's Trick 【2-sat】

    题目 liympanda, one of Ikki's friend, likes playing games with Ikki. Today after minesweeping with Ikk ...

  2. poj 3207 Ikki's Story IV - Panda's Trick【2-SAT+tarjan】

    注意到相交的点对一定要一里一外,这样就变成了2-SAT模型 然后我建边的时候石乐志,实际上不需要考虑这个点对的边是正着连还是反着连,因为不管怎么连,能相交的总会相交,所以直接判相交即可 然后tarja ...

  3. 【POJ3207】Ikki's Story IV - Panda's Trick

    POJ 3207 Ikki's Story IV - Panda's Trick liympanda, one of Ikki's friend, likes playing games with I ...

  4. POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题)

    POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题) Description liympanda, one of Ikki's friend, likes ...

  5. poj 3207 Ikki's Story IV - Panda's Trick (2-SAT)

    http://poj.org/problem?id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 13 ...

  6. POJ 3207 Ikki's Story IV - Panda's Trick (2-sat)

    Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 6691   ...

  7. POJ 3207 Ikki's Story IV - Panda's Trick

    Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 7296   ...

  8. POJ3207 Ikki's Story IV – Panda's Trick

    Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9426   Accepted: 3465 Description liym ...

  9. POJ-3207 Ikki's Story IV - Panda's Trick 2sat

    题目链接:http://poj.org/problem?id=3207 题意:在一个圆圈上有n个点,现在用线把点两两连接起来,线只能在圈外或者圈内,现给出m个限制,第 i 个点和第 j 个点必须链接在 ...

  10. poj3207 Ikki's Story IV - Panda's Trick 2-SAT

    题目传送门 题意:在一个圆上顺时针安放着n个点,给出m条线段连接端点,要求线段不相交,线段可以在圆内也可以在圆外,问是否可以. 思路:假设一条线段,放在圆外是A,放在园内是A',那么两条线段如果必须一 ...

随机推荐

  1. LinQ的使用

    LinQ:LinQ to Sql类 它是一个集成化的数据访问类,微软将原本需要我们自己动手去编写的一些代码,集成到了这个类中,会自动生成. LinQ的创建: 添加项——添加新项(LinQ to Sql ...

  2. laravel 配置站点域名

    访问一直报404错误 laravel端: default.conf server {        listen       80;        server_name  api.xxxx.com; ...

  3. 伟景行 citymaker 从入门到精通(1)——js开发,最基本demo,加载cep工程文件

    开发环境:citymaker 7(以下简称cm),jquery,easyui 1.4(界面),visual studio 2012(没有vs,不部署到IIS也行,html文件在本地目录双击打开可用) ...

  4. spring mvc 解决 Could not open ServletContext resource [/WEB-INF/dispatcher-servlet.xml] 异常

    org.springframework.beans.factory.BeanDefinitionStoreException: IOException parsing XML document fro ...

  5. The lion king 经典句型摘录

    What am I going to do with him? Everything the light touches is our kingdom. But I thought a king ca ...

  6. NYOJ 题目42 一笔画问题

    一笔画问题 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下 ...

  7. SAP云平台架构概述

    在我们开始SAP云平台的架构之旅之前,让我们先看看SAP已经发布的一些其他云产品.这些云产品方案可以分为公有云和私有云两种. SAP公有云解决方案见下图最右侧,比较著名的有SAP SuccessFac ...

  8. 聊天室(C++客户端+Pyhton服务器)_1.框架搭设

    聊天室 一.客户端发送 用MFC可视化做个客户端登录界面. 先点击注册账号按钮,注册账号的时候就需要连接到服务器, 服务器需要查数据库,并做出相应的回应. 所以开始写C++客户端套接口类用来连接到服务 ...

  9. iview tabs里面放入 i-switch 注意slot不是写在 props里面

    iview tabs里面放入 i-switch 注意slot不是写在 props里面 <Tabs value="name1"> <TabPane :label=& ...

  10. nodeJS和npm的环境配置

    1.windows下的NodeJS安装是比较方便的(v0.6.0版本之后,支持windows native),只需要登陆官网(http://nodejs.org/),便可以看到首页的“INSTALL” ...