P1357 花园 (矩阵快速幂+ DP)
题意:一个只含字母C和P的环形串
求长度为n且每m个连续字符不含有超过k个C的方案数
m <= 5 n <= 1e15
题解:用一个m位二进制表示状态 转移很好想
但是这个题是用矩阵快速幂加速dp的 因为每一位的转移都是一样的
用一个矩阵表示状态i能否转移到状态j 然后跑一遍
统计答案特别讲究 因为是一个环 从1 ~ n+m
那么 m+1 ~ n + m之间就是我们所求的 1 ~ m和n+1 ~ n + m是同样的一段
就相当于把m位二进制状态 转移n次
然后再转移到自己的就是答案
初试模板题
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9 + ; ll n, m, k, len;
struct node {
ll c[][];
}re, x; bool check(int x) {
int cnt = ;
while(x) {
if(x & ) cnt++;
x >>= ;
}
if(cnt > k) return false;
return true;
} node mul(node a, node b) {
node res;
memset(res.c, , sizeof(res.c)); for(int i = ; i < len; i++)
for(int j = ; j < len; j++)
for(int k = ; k < len; k++)
res.c[i][j] = (res.c[i][j] + a.c[i][k] * b.c[k][j] % mod) % mod;
return res;
} node pow_mod(node x, ll y) {
node res;
for(int i = ; i < len; i++) res.c[i][i] = ; while(y) {
if(y & ) res = mul(res, x);
x = mul(x, x);
y >>= ;
}
return res;
} int main() {
scanf("%lld%lld%lld", &n, &m, &k);
len = ( << m);
for(int i = ; i < len; i++)
for(int j = ; j < len; j++)
x.c[i][j] = ; for(int i = ; i < len; i++) {
if(!check(i)) continue;
int tmp = i;
int ctmp = << (m - );
if((tmp & ctmp) == ctmp) tmp -= ctmp;
tmp <<= ;
if(check(tmp)) x.c[i][tmp] = ;
tmp |= ;
if(check(tmp)) x.c[i][tmp] = ;
}
re = pow_mod(x, n); ll ans = ;
for(int i = ; i < len; i++) {
if(check(i)) {
ans += re.c[i][i];
ans %= mod;
}
}
printf("%lld\n", ans);
return ;
}
P1357 花园 (矩阵快速幂+ DP)的更多相关文章
- codeforces 691E 矩阵快速幂+dp
传送门:https://codeforces.com/contest/691/problem/E 题意:给定长度为n的序列,从序列中选择k个数(可以重复选择),使得得到的排列满足xi与xi+1异或的二 ...
- BZOJ1009 矩阵快速幂+DP+KMP
Problem 1009. -- [HNOI2008]GT考试 1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: ...
- Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP
题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...
- COJ 1208 矩阵快速幂DP
题目大意: f(i) 是一个斐波那契数列 , 求sum(f(i)^k)的总和 由于n极大,所以考虑矩阵快速幂加速 我们要求解最后的sum[n] 首先我们需要思考 sum[n] = sum[n-1] + ...
- Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check
A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...
- Codeforces 989E A Trance of Nightfall 矩阵快速幂+DP
题意:二维平面上右一点集$S$,共$n$个元素,开始位于平面上任意点$P$,$P$不一定属于$S$,每次操作为选一条至少包含$S$中两个元素和当前位置$P$的直线,每条直线选取概率相同,同一直线上每个 ...
- BZOJ1009: [HNOI2008]GT考试 (矩阵快速幂 + DP)
题意:求一个长度为n的数字字符串 (n <= 1e9) 不出现子串s的方案数 题解:用f i,j表示长度为i匹配到在子串j的答案 用kmp的失配函数预处理一下 然后这个转移每一个都是一样的 所以 ...
- bzoj2004 矩阵快速幂优化状压dp
https://www.lydsy.com/JudgeOnline/problem.php?id=2004 以前只会状压dp和矩阵快速幂dp,没想到一道题还能组合起来一起用,算法竞赛真是奥妙重重 小Z ...
- [luogu1357] 花园 [dp+矩阵快速幂]
题面: 传送门 思路: 把P形花圃记录为0,C形记录为1,那么一段花圃就可以状态压缩成一个整数 那么,我们可以有这样的状压dp: dp[i][S]表示前i个花圃,最后m个的状态为S的情况 如果这是一条 ...
随机推荐
- Struts2验证框架的配置及validation.xml常用的验证规则
转自:https://blog.csdn.net/wenwenxiong/article/details/55802655
- UVaLive 6588 && Gym 100299I (贪心+构造)
题意:给定一个序列,让你经过不超过9的6次方次操作,变成一个有序的,操作只有在一个连续区间,交换前一半和后一半. 析:这是一个构造题,我们可以对第 i 个位置找 i 在哪,假设 i 在pos 位置, ...
- LightOJ 1140 How Many Zeroes? (数位DP)
题意:统计在给定区间内0的数量. 析:数位DP,dp[i][j] 表示前 i 位 有 j 个0,注意前导0. 代码如下: #pragma comment(linker, "/STACK:10 ...
- Codeforces - 706B - Interesting drink - 二分 - 简单dp
https://codeforces.com/problemset/problem/706/B 因为没有看见 $x_i$ 的上限是 $10^5$ ,就用了二分去做,实际上这道题因为可乐的价格上限是 $ ...
- Swift3.0 UITextView写反馈界面
效果图 适配用的 SnapKit 使用介绍: http://www.hangge.com/blog/cache/detail_1097.html private func creationTextV ...
- python __builtins__ credits类 (15)
15.'credits', 信用 class _Printer(builtins.object) | interactive prompt objects for printing the licen ...
- 强连通分量再探 By cellur925
我真的好喜欢图论啊. (虽然可能理解的并不深hhh) 上一次(暑假)我们初探了强联通分量,这一次我们再探.(特别感谢pku-lyc老师的课件.有很多引用) 上次我们忘记讨论复杂度了.tarjan老爷爷 ...
- 调试的时候禁止chrome缓存图片
https://blog.csdn.net/yiifaa/article/details/54290047 https://blog.csdn.net/xinghuo0007/article/deta ...
- Centos 6.x 搭建 Zabbix Server
zabbix(音同 zæbix)是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix能监视各种网络参数,保证服务器系统的安全运营:并提供灵活的通知机制以让 ...
- HDFS Java API
HDFS Java API 搭建Hadoop客户端与Java访问HDFS集群