[BZOJ4815][CQOI2017]小Q的表格 数论+分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815
题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目。
然后大家都知道$(a,b)=(a,a-b)=(a,a+b)$,于是观察(猜)一下这个表格与gcd的关系。
可以发现每次修改$(a,b)$会影响到所有$(i,j)=(a,b)$的点,并且关系为$$f(i,j)=\frac{i}{a}*\frac{j}{b}*f(a,b)$$
所以只需要知道$f(d,d)$的值记为$f(d)$,就能推出其他的值。
然后慢慢推推推大概可以推到这一步$$ans=\sum_{d=1}^nf(d)\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}(i,j)[(i,j)==1]$$
可以发现这个式子中$i$和$j$是对称的$$S(\frac{n}{d})=\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}(i,j)[(i,j)==1]$$
不妨先设$i>j$,于是我们有$$S′(n)=\sum_{i=1}^n\frac{φ(i)*i^{2}}{2}$$
由于$i$与$j$对称,所以有$$S(n)=2*S′(n)=\sum_{i=1}^nφ(i)*i^{2}$$
所以最终的答案就变成了$$ans=\sum_{d=1}^nf(d)S(\frac{n}{d})$$
我们记录$f$的前缀和,并且分块维护这个数列,而$S$很明显是可以预处理出来的。
询问了$m$次,于是总体复杂度应该是$O(m\sqrt{n})$
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int inline readint(){
int Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
ll inline readll(){
ll Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
void outint(int x){
if(x>=) outint(x/);
putchar(x%+'');
}
int inline gcd(int x,int y){
return !y?x:gcd(y,x%y);
}
int n,m;
int phi[],p[],cnt=;
int la,blk,add[];
int f[];
bool vis[];
void sieve(int n){
for(int i=;i<=n;i++){
if(!vis[i]){
p[++cnt]=i;
phi[i]=i-;
}
for(int j=;p[j]*i<=n;j++){
vis[p[j]*i]=true;
if(i%p[j]==){
phi[p[j]*i]=phi[i]*p[j];
break;
}
phi[p[j]*i]=phi[i]*(p[j]-);
}
phi[i]=(1LL*i*i%mod*phi[i]+phi[i-])%mod;
f[i]=(1LL*i*i+f[i-])%mod;
}
}
void modify(int x,int ad){
int l=(x-)/blk+,
r=min(n,l*blk);
for(int i=l+;i<=la;i++) add[i]=(add[i]+ad)%mod;
for(int i=x;i<=r;i++) f[i]=(f[i]+ad)%mod;
}
int inline qry(int x){
return x?(f[x]+add[(x-)/blk+])%mod:;
}
int main(){
m=readint();
n=readint();
f[]=phi[]=;
blk=(int)sqrt(n);
la=(n-)/blk+;
sieve(n);
for(int i=;i<=m;i++){
int a=readint(),
b=readint(),
g=gcd(a,b),
ans=;
ll x=readll();
int k=readint();
x=x/(1LL*(a/g)*(b/g))%mod;
modify(g,((x-qry(g)+qry(g-))%mod+mod)%mod);
for(int j=,now;j<=k;j=now+){
now=k/(k/j);
ans=(ans+1LL*(qry(now)-qry(j-)+mod)%mod*phi[k/j])%mod;
}
outint(ans);
putchar('\n');
}
return ;
}
[BZOJ4815][CQOI2017]小Q的表格 数论+分块的更多相关文章
- [CQOI2017]小Q的表格(数论+分块)
题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...
- [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)
4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 832 Solved: 342[Submit][Statu ...
- bzoj 4815: [Cqoi2017]小Q的表格 [数论]
4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...
- [bzoj4815]: [Cqoi2017]小Q的表格
来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. ...
- BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】
题目链接 BZOJ4815 题解 根据题中的式子,手玩一下发现和\(gcd\)很像 化一下式子: \[ \begin{aligned} bf(a,a + b) &= (a + b)f(a,b) ...
- bzoj 4815 [Cqoi2017]小Q的表格——反演+分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...
- 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)
[BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...
- 洛咕 P3700 [CQOI2017]小Q的表格
洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...
- [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格
Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...
随机推荐
- 【CSS3动画实战】Mailman Icon
周末闲来无事,就想着做点东西练练手.又苦于自己 PS 水平太差,设计不出什么好看的东西. 干脆就在 Dribbble 上逛一逛,看看有什么看起来比较屌的,实际上却很简单的东西. 一共做了 3 个,均已 ...
- c语言实现输出一个数的每一位
比方输入1234.在屏幕上打印出1 2 3 4 代码展示: 方法一: #define _CRT_SECURE_NO_WARNINGS 1 #include<stdio.h> #includ ...
- java基础入门-建立能够多client链接的ServerSocket
承接上一篇文章,今天谈论一下能够多client链接的ServerSocket. 这里面注意涉及到的技术点是: 1.ServerSocket 2.多线程 这次我们分成两个类来实现,先上代码: packa ...
- 2016/3/18 ①PHP基础 ② PHP函数 ③其他函数(随机数、关于日期) ④正则表达式 ⑤字符串处理
一.PHP基础 1,标记和注释 ①<?php?> ②单行注释// 多行注释/** */2, 输出语句 ①echo输出 echo可以输出多个字符串,用逗号隔开. ②print输出 pr ...
- form标签中id和name属性的区别
HTML元素的ID和Name属性的区别 一直认为ID和NAME是一样的,两个又可以一起出现,甚是疑惑. 今天BAIDU了一下,才发现里面大有文章.发出来研究研究: 最classical的答案:ID就像 ...
- myeclipse包的层数和package的层数不一致
复制别人的工程的时候常常遇到包的层数不一致的情况 如下图 其实com.weibo.happpy.dao的上面还有一层java包,但是代码里没有写java....... 可以通过如下方式修改工程:
- solr入门之多线程操作solr中索引字段的解决
涉及的问题: 建索引时有一个字段是该词语出现的次数,这个字段是放在solr里的 而我用的是多线程来进行全量导入的,这里就涉及到了多线程问题 多个线程操作同一个变量时怎样处理? 我是这样子做的 : 首 ...
- YTU 2432: C++习题 对象数组输入与输出
2432: C++习题 对象数组输入与输出 时间限制: 1 Sec 内存限制: 128 MB 提交: 1603 解决: 1152 题目描述 建立一个对象数组,内放n(n<10)个学生的数据( ...
- 腾讯QQ空间应用宽屏接入
QQ 空间接入宽屏. (与腾讯微博分属两个不同平台) 相关文档: 流动应用画布说明 前端页面规范 多区多服场景说明 应用宽屏根据游戏分为两种. 1: 普通游戏,但想要实现宽屏显示. 2: 多区多服 ...
- EF 连接MySql
使用EntityFramework6连接MySql数据库(db first方式) http://www.cnblogs.com/24la/archive/2014/04/03/ef6-mysql.ht ...