题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4815

题目中所给条件中的$(a,a+b)$和$(a,b)$的关系很瞩目。

然后大家都知道$(a,b)=(a,a-b)=(a,a+b)$,于是观察(猜)一下这个表格与gcd的关系。

可以发现每次修改$(a,b)$会影响到所有$(i,j)=(a,b)$的点,并且关系为$$f(i,j)=\frac{i}{a}*\frac{j}{b}*f(a,b)$$

所以只需要知道$f(d,d)$的值记为$f(d)$,就能推出其他的值。

然后慢慢推推推大概可以推到这一步$$ans=\sum_{d=1}^nf(d)\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}(i,j)[(i,j)==1]$$

可以发现这个式子中$i$和$j$是对称的$$S(\frac{n}{d})=\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}(i,j)[(i,j)==1]$$

不妨先设$i>j$,于是我们有$$S′(n)=\sum_{i=1}^n\frac{φ(i)*i^{2}}{2}$$

由于$i$与$j$对称,所以有$$S(n)=2*S′(n)=\sum_{i=1}^nφ(i)*i^{2}$$

所以最终的答案就变成了$$ans=\sum_{d=1}^nf(d)S(\frac{n}{d})$$

我们记录$f$的前缀和,并且分块维护这个数列,而$S$很明显是可以预处理出来的。

询问了$m$次,于是总体复杂度应该是$O(m\sqrt{n})$

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int mod=1e9+;
int inline readint(){
int Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
ll inline readll(){
ll Num;char ch;
while((ch=getchar())<''||ch>'');Num=ch-'';
while((ch=getchar())>=''&&ch<='') Num=Num*+ch-'';
return Num;
}
void outint(int x){
if(x>=) outint(x/);
putchar(x%+'');
}
int inline gcd(int x,int y){
return !y?x:gcd(y,x%y);
}
int n,m;
int phi[],p[],cnt=;
int la,blk,add[];
int f[];
bool vis[];
void sieve(int n){
for(int i=;i<=n;i++){
if(!vis[i]){
p[++cnt]=i;
phi[i]=i-;
}
for(int j=;p[j]*i<=n;j++){
vis[p[j]*i]=true;
if(i%p[j]==){
phi[p[j]*i]=phi[i]*p[j];
break;
}
phi[p[j]*i]=phi[i]*(p[j]-);
}
phi[i]=(1LL*i*i%mod*phi[i]+phi[i-])%mod;
f[i]=(1LL*i*i+f[i-])%mod;
}
}
void modify(int x,int ad){
int l=(x-)/blk+,
r=min(n,l*blk);
for(int i=l+;i<=la;i++) add[i]=(add[i]+ad)%mod;
for(int i=x;i<=r;i++) f[i]=(f[i]+ad)%mod;
}
int inline qry(int x){
return x?(f[x]+add[(x-)/blk+])%mod:;
}
int main(){
m=readint();
n=readint();
f[]=phi[]=;
blk=(int)sqrt(n);
la=(n-)/blk+;
sieve(n);
for(int i=;i<=m;i++){
int a=readint(),
b=readint(),
g=gcd(a,b),
ans=;
ll x=readll();
int k=readint();
x=x/(1LL*(a/g)*(b/g))%mod;
modify(g,((x-qry(g)+qry(g-))%mod+mod)%mod);
for(int j=,now;j<=k;j=now+){
now=k/(k/j);
ans=(ans+1LL*(qry(now)-qry(j-)+mod)%mod*phi[k/j])%mod;
}
outint(ans);
putchar('\n');
}
return ;
}

[BZOJ4815][CQOI2017]小Q的表格 数论+分块的更多相关文章

  1. [CQOI2017]小Q的表格(数论+分块)

    题目描述 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. 为了完成任务,小Q需要列一个表格,表格有无穷多 ...

  2. [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演)

    4815: [Cqoi2017]小Q的表格 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 832  Solved: 342[Submit][Statu ...

  3. bzoj 4815: [Cqoi2017]小Q的表格 [数论]

    4815: [Cqoi2017]小Q的表格 题意: 单点修改,查询前缀正方形和.修改后要求满足条件f(a,b)=f(b,a), b×f(a,a+b)=(a+b)*f(a,b) 一开始sb了认为一次只会 ...

  4. [bzoj4815]: [Cqoi2017]小Q的表格

    来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理.每当小Q不知道如何解决时,就只好向你求助. ...

  5. BZOJ4815 [CQOI2017]小Q的表格 【数论 + 分块】

    题目链接 BZOJ4815 题解 根据题中的式子,手玩一下发现和\(gcd\)很像 化一下式子: \[ \begin{aligned} bf(a,a + b) &= (a + b)f(a,b) ...

  6. bzoj 4815 [Cqoi2017]小Q的表格——反演+分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4815 大概就是推式子的时候注意有两个边界都是 n ,考虑变成 2*... 之类的. 分块维护 ...

  7. 【BZOJ4815】[CQOI2017]小Q的表格(莫比乌斯反演,分块)

    [BZOJ4815][CQOI2017]小Q的表格(莫比乌斯反演,分块) 题面 BZOJ 洛谷 题解 神仙题啊. 首先\(f(a,b)=f(b,a)\)告诉我们矩阵只要算一半就好了. 接下来是\(b* ...

  8. 洛咕 P3700 [CQOI2017]小Q的表格

    洛咕 P3700 [CQOI2017]小Q的表格 神仙题orz 首先推一下给的两个式子中的第二个 \(b\cdot F(a,a+b)=(a+b)\cdot F(a,b)\) 先简单的想,\(F(a,a ...

  9. [bzoj4815] [洛谷P3700] [Cqoi2017] 小Q的表格

    Description 小Q是个程序员. 作为一个年轻的程序员,小Q总是被老C欺负,老C经常把一些麻烦的任务交给小Q来处理. 每当小Q不知道如何解决时,就只好向你求助.为了完成任务,小Q需要列一个表格 ...

随机推荐

  1. android 浮动窗体学习笔记及个人理解(仿360手机助手)

    很感谢原文作者 http://blog.csdn.net/guolin_blog/article/details/8689140 经自己理解 程序执行界面例如以下图: 1.程序入口界面 2.小浮动窗体 ...

  2. 嵌入式开发之davinci--- DVRRDK, EZSDK和DVSDK这三者有什么区别

    下载的时候选择信息要避免security类型的产品,这个是要审查的. DVRRDK是专门针对DVR的开发包是非公开的,针对安防的客户定制的,效率要高. EZSDK是开放的版本架构上使用openmax可 ...

  3. 分页语句-取出sql表中第31到40的记录(以自动增长ID为主键)

    sql server方案1: id from t order by id ) orde by id sql server方案2: id from t order by id) order by id ...

  4. test_action

    [TOP] 为什么百度校招数据挖掘工程师的笔试题目是跟数据挖掘关系不大? - 研究生生活交流 - 王道论坛,专注于计算机考研的点点滴滴! http://www.cskaoyan.com/thread- ...

  5. bzoj1566 [NOI2009]管道取珠——DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...

  6. 洛谷P3004 宝箱Treasure Chest——DP

    题目:https://www.luogu.org/problemnew/show/P3004 似乎有点博弈的意思,但其实是DP: f[i][j] 表示 i~j 的最优结果,就可以进行转移: 注意两个循 ...

  7. c#截图工具

    厚积薄发,丰富的公用类库积累,助你高效进行系统开发(6)----全屏截图.图标获取.图片打印.页面预览截屏.图片复杂操作等 俗话说,一个好汉十个帮,众人拾柴火焰高等都说明一个道理,有更多的资源,更丰富 ...

  8. poj 2411((多米诺骨牌问题))

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12854   Accepted: 748 ...

  9. ObjectInputStream与ObjectOutputStream类实现对象的存取

    1. ObjectInputStream与ObjectOutputStream类所读写的对象必须实现Serializable接口,对象中的transient和static类型成员变量不会被读取和写入 ...

  10. bzoj 1096: [ZJOI2007]仓库建设【斜率优化】

    好眼熟啊 直接dp显然很难算,所以设val为只在n点建一个仓库的费用,然后设f[i]为在i~n点建若干仓库并且i点一定建一个仓库的最大省钱数 转移很显然,设s为p的前缀和,f[i]=max{f[j]+ ...