关于 最短路条数 和 边不可重复最短路条数问题 /hdu3599(边不可重复最短路)
原先一直在做一道省赛题,由于题意错误理解成球最短路条数,误打误撞敲了最短路条数,又发现hdu3599(多校)求边不可重复最短路条数。下面说说俩种问题解法:
最短路条数:
求一个图一共一几条最短路径,思路:先从终点跑一边最短路,记录终点到到所有点最短距离(d【i】),然后从起点出发,dfs 按d[i]走(必是最短路径),一句话:我到终点的最短路条数=我的所有孩子到终点的最短路条数之和,这样只需一遍即可。这不知道是不是叫记忆化搜索?
边不可重复最短路径条数:(最短路+建新图之最大流)
hdu3599题意:求1-->n最短路条数,所有路径边不可重复。思路:边不可重复??!!转为流量的为1 的话,求最大流啊(以后切记该方法,不可重复问题转最大流)!于是:先跑一遍最短路(随便从起点还是终点),然后按老图中是最短路的边就在新图添加一条边,权为1,这样的话,从起点到终点跑最大流即为答案。
附代码:问题一:
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
int n;
int e[100000][3];int head[2000];
int nume=0;
int d[2000];
const int inf =0x3f3f3f3f;
int vis[2000];
int inq[2000];
void adde(int a,int b,int w)
{
e[nume][0]=b;e[nume][1]=head[a];head[a]=nume;
e[nume++][2]=w;
e[nume][0]=a;e[nume][1]=head[b];head[b]=nume;
e[nume++][2]=w;
}
void spfa() //一遍求出终点到所有点的最短路长度d[i]。
{
queue<int>q;
int start;
start=n;
inq[start]=1;
q.push(start);
d[start]=0;
while(!q.empty())
{
int cur=q.front();
q.pop();
inq[cur]=0;
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(d[cur]+e[i][2]<d[v])
{
d[v]=d[cur]+e[i][2];
if(!inq[v])
{
inq[v]=1;
q.push(v);
}
}
}
}
return ;
}
long long counted[2000]; //点i到终点有几条最短路
int nowd[2000]; //从原点出发当前所走的长度
long long dfs(int cur) //记忆化收索? 访问所有点一遍求出最短路条数,
{
if(cur==n)
return 1;
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(nowd[cur]+e[i][2]+d[v]!=d[1]) //走这一步必需是最短的
continue;
if(!vis[v]) //没有走过
{
nowd[v]=nowd[cur]+e[i][2];
vis[v]=1;
counted[cur]+=dfs(v); //我所有孩子(是最短路径中)到目标的最短路之和为我到目标最短路
}
else
{
counted[cur]+=counted[v]; //该孩子最短路条数已经算出
}
}
return counted[cur];
}
int main()
{
int ta;
cin>>ta;
while(ta--)
{
scanf("%d",&n);
int aa,bb,cc;
for(int i=0;i<=n;i++)
{
head[i]=-1;
nowd[i]=d[i]=inf;
inq[i]=counted[i]=vis[i]=0;
}
nume=0;
while(~scanf("%d%d%d",&aa,&bb,&cc)&&(aa||bb||cc))
adde(aa,bb,cc);
spfa();
counted[n]=1;
nowd[1]=0;
vis[1]=1;
cout<<dfs(1)<<endl;
}
return 0;
}
问题2:
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
int n;
int e[2260000][3];int head[1510];
int nume=0;
int d[1510];
const int inf =0x3f3f3f3f;
int inq[1510];
void adde(int a,int b,int w) //原图
{
e[nume][0]=b;e[nume][1]=head[a];head[a]=nume;
e[nume++][2]=w;
e[nume][0]=a;e[nume][1]=head[b];head[b]=nume;
e[nume++][2]=w;
}
int ee[2260000][3];int head2[1510]; //新图
void adde2(int a,int b)
{
ee[nume][0]=b;ee[nume][1]=head2[a];head2[a]=nume;
ee[nume++][2]=1;
ee[nume][0]=a;ee[nume][1]=head2[b];head2[b]=nume;
ee[nume++][2]=0;
}
void spfa() //求出终点到所有点的最短路长度d[i]。
{
queue<int>q;
int start;
start=n;
inq[start]=1;
q.push(start);
d[start]=0;
while(!q.empty())
{
int cur=q.front();
q.pop();
inq[cur]=0;
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(d[cur]+e[i][2]<d[v])
{
d[v]=d[cur]+e[i][2];
if(!inq[v])
{
inq[v]=1;
q.push(v);
}
}
}
}
return ;
}
int vis[1510];int lev[1510];
int nowd[1510]; //从原点出发当前所走的长度
void dfs_getg(int cur) // 遍历一次老图获得新图
{
vis[cur]=1; //注意这里要标记访问,否则新图有重边!开始因为这个WA了好几遍!
if(cur==n)
return ;
for(int i=head[cur];i!=-1;i=e[i][1])
{
int v=e[i][0];
if(nowd[cur]+e[i][2]+d[v]!=d[1]) //走这一步必需是最短的
continue;
else //没有走过
{
nowd[v]=nowd[cur]+e[i][2];
adde2(cur,v);
if(!vis[v]) //这里在添加边之后方可进入,
dfs_getg(v);
}
}
return ;
} bool bfs() //dinic不解释
{
for(int i=0;i<=n;i++)
vis[i]=lev[i]=0;
queue<int>q;
q.push(1);
vis[1]=1;
while(!q.empty())
{
int cur=q.front();
q.pop();
for(int i=head2[cur];i!=-1;i=ee[i][1])
{
int v=ee[i][0];
if(!vis[v]&&ee[i][2]>0)
{
lev[v]=lev[cur]+1;
if(v==n) return 1;
vis[v]=1;
q.push(v);
}
}
}
return vis[n];
}
int dfs(int u,int minf)
{
if(u==n||minf==0)return minf;
int sumf=0,f;
for(int i=head2[u];i!=-1&&minf;i=ee[i][1])
{
int v=ee[i][0];
if(ee[i][2]>0&&lev[v]==lev[u]+1)
{
f=dfs(v,ee[i][2]<minf?ee[i][2]:minf);
ee[i][2]-=f;ee[i^1][2]+=f;
minf-=f;sumf+=f;
}
}
return sumf;
}
int dinic()
{
int sum=0;
while(bfs())
sum+=dfs(1,inf);
return sum;
}
int main()
{
int ta;
cin>>ta;
while(ta--)
{
scanf("%d",&n);
int aa,bb,cc;
for(int i=0;i<=n;i++)
{
head[i]=-1;
nowd[i]=d[i]=inf;
inq[i]=vis[i]=0;
}
nume=0;
while(~scanf("%d%d%d",&aa,&bb,&cc)&&(aa||bb||cc))
adde(aa,bb,cc);
if(n==1){cout<<0<<endl; continue;} // 1个点的时候要特判!!
spfa();
nume=0;
for(int i=0;i<=n;i++)
head2[i]=-1;
nowd[1]=0;
dfs_getg(1);
cout<<dinic()<<endl;
}
return 0;
}
附几组数据:
5
1 2 1
2 3 1
3 5 1
1 3 2
1 4 2
3 4 2
0 0 0
4
1 0 2
2 0 2
1 3 1
2 3 3
2 4 1
1 2 4
0 0 0
6
1 2 1
3 2 1
3 4 1
1 3 2
4 2 2
4 5 1
5 6 1
4 6 2
0 0 0
1
0 0 0
关于 最短路条数 和 边不可重复最短路条数问题 /hdu3599(边不可重复最短路)的更多相关文章
- OpenJudge计算概论-第二个重复出现的数
/*======================================================================== 第二个重复出现的数 总时间限制: 1000ms 内 ...
- Openjudge-计算概论(A)-第二个重复出现的数
描述: 给定一个正整数数组(元素的值都大于零),输出数组中第二个重复出现的正整数,如果没有,则输出字符串"NOT EXIST". 输入第一行为整数m,表示有m组数据.其后每组数据分 ...
- 一个int 数组,里面数据无任何限制,要求求出所有这样的数a[i],其左边的数都小于等于它,右边的数都大于等于它。能否只用一个额外数组和少量其它空间实现。
一个int数组, 比如 array[],里面数据无任何限制,要求求出 所有这样的数array[i],其左边的数都小于等于它,右边的数都大于等于它.能否只用一个额外数组和少量其它空间实现. 分析:这题很 ...
- 17.从键盘上输入一个正整数n,请按照以下五行杨辉三角形的显示方式, 输出杨辉三角形的前n行。请采用循环控制语句来实现。 (三角形腰上的数为1,其他位置的数为其上一行相邻两个数之和。) 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
17.从键盘上输入一个正整数n,请按照以下五行杨辉三角形的显示方式, 输出杨辉三角形的前n行.请采用循环控制语句来实现. (三角形腰上的数为1,其他位置的数为其上一行相邻两个数之和.) 1 1 1 1 ...
- 转载:IIS 之 连接数、并发连接数、最大并发工作线程数、队列长度、最大工作进程数
一.IIS连接数 一般购买过虚拟主机的朋友都熟悉购买时,会限制IIS连接数,顾名思义即为IIS服务器可以同时容纳客户请求的最高连接数,准确的说应该叫“IIS限制连接数”. 客户请求的连接内容包括: [ ...
- 【Python3练习题 025】 一个数,判断它是不是回文数。即12321是回文数,个位与万位相同,十位与千位相同
[Python练习题 025] 一个5位数,判断它是不是回文数.即12321是回文数,个位与万位相同,十位与千位相同 x = input('请输入任意位数的数字:') if x == x[::-1]: ...
- 欧拉函数(小于或等于n的数中与n互质的数的数目)&& 欧拉函数线性筛法
[欧拉函数] 在数论,对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目.此函数以其首名研究者欧拉命名,它又称为Euler’s totient function.φ函数.欧拉商数等. 例如φ( ...
- IIS 之 连接数、并发连接数、最大并发工作线程数、队列长度、最大工作进程数
一.IIS连接数 一般购买过虚拟主机的朋友都熟悉购买时,会限制IIS连接数,顾名思义即为IIS服务器可以同时容纳客户请求的最高连接数,准确的说应该叫“IIS限制连接数”. 客户请求的连接内容包括: [ ...
- 12--c完数/最大公约数/最小公倍数/素数/回文数
完数/最大公约数/最小公倍数/素数/回文数 2015-04-08 10:33 296人阅读 评论(0) 收藏 举报 分类: C/C++(60) 哈尔滨工业大学(8) 版权声明:本文为博主原创文章 ...
随机推荐
- python基础一 day14 生成器函数进阶
def generator(): print(123) content = yield 1 print('=======',content) print(456) arg = yield 2 '''' ...
- rpn网络结构再分析
这是rpn网络train阶段的网络结构图 rpn_conv1之前的网络是特征提取层,也是和fast rcnn共享的层.rpn_conv1是一层1*1的卷积,这一层是单独为rpn网络多提取一层特征,这一 ...
- Freemarker入门小案例(生成静态网页的其中一种方式)
其实生成静态网页的方式有好多种,我昨天看了一下,Freemarker是其中一种,但是Freemarker现在我们都用得比较少了,现在用得ActiveMQ用来发送信息到静态页面,不过想了一下这个小东西, ...
- javaEE(11)_事务处理
一.事务的概念 •事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. •例如:A——B转帐,对应于如下两条sql语句 update from account set mon ...
- ios多线程NSThread
1.简介: 1.1 iOS有三种多线程编程的技术,分别是: 1..NSThread 2.Cocoa NSOperation (iOS多线程编程之NSOperation和NSOperationQueue ...
- ios之UISearchBar
当你在seachBar中输入字母之前的时候,只是用鼠标选中searchBar的时候,如图 终端输出截图如下:(这个时候调用先shouldBeginEditing,之后调用didBeginEditing ...
- std::ios::sync_with_stdio和tie()——给cin加速
平时在Leetcode上刷题的时候,总能看到有一些题中最快的代码都有这样一段 static const auto init = []() { std::ios::sync_with_stdio(fal ...
- 对于Nginx+PHP实现大文件上传时候需要修改的参数
post_max_size表示POST表单提交的最大大小upload_max_filesize 表示文件上传的最大大小. 通常post_max_size设置的值必须必upload_max_filesi ...
- tkinter学习-选择按钮
阅读目录 Checkbutton Radiobutton LabelFrame checkbutton : 说明:多选框控件,用于在程序中提供多项选择框,但是处理“多选一”的问题,还是交给 Radio ...
- Linux基础学习-使用iSCSI服务部署网络存储
使用iSCSI服务部署网络存储 iSCSI技术实现了物理硬盘设备与TCP/IP网络协议的相互结合,使得用户可以通过互联网方便地访问远程机房提供的共享存储资源.下面介绍如何在Linux上部署iSCSI服 ...