投影到地面之后,会发现圆形在平行光下面积和形状是不会变的,也就是所要求的图形是若干个圆和把相邻两个圆连起来的公切线所组成的。

公切线和圆间距瞎求一下就行,注意要去掉被完全覆盖的圆

然后simpson即可

eps大概1e-6

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=1005;
const double eps=1e-6,inf=1e15;
double alp;
int n,m,num;
struct dian
{
double x,y;
dian (double X=0,double Y=0)
{
x=X; y=Y;
}
};
struct yuan
{
double r;
dian c;
yuan(dian a=(dian){0,0},double R=0)
{
c=a; r=R;
}
}a[N];
struct xian
{
dian s,t;
double k,b;
xian(dian S=(dian){0,0},dian T=(dian){0,0})
{
s=S,t=T;
if(s.x>t.x) swap(s,t);
k=(s.y-t.y)/(s.x-t.x);
b=s.y-k*s.x;
}
double f(double x)
{
return k*x+b;
}
}l[N];
int cmp(double x)
{
if(fabs(x)<eps)
return 0;
return x<0? -1:1;
}
double f(double x)
{
double re=0;
for(int i=1;i<=n;i++)
{
double d=fabs(x-a[i].c.x);
if(cmp(d-a[i].r)>0)
continue;
double len=2*sqrt(a[i].r*a[i].r-d*d);
re=max(re,len);
}
for(int i=1;i<=num;i++)
if(x>=l[i].s.x && x<=l[i].t.x)
re=max(re,2*l[i].f(x));
return re;
}
double sps(double l,double r,double now,double fl,double fr,double fm)
{//cout<<l<<" "<<r<<endl;
double mid=(l+r)/2,ffl=f((l+mid)/2),ffr=f((mid+r)/2),p=(fl+fm+ffl*4)*(mid-l)/6,q=(fm+fr+ffr*4)*(r-mid)/6;
if(cmp(now-p-q)==0)
return now;
else
return sps(l,mid,p,fl,fm,ffl)+sps(mid,r,q,fm,fr,ffr);
}
int main()
{
scanf("%d%lf",&n,&alp);
double h,r;
for(int i=1;i<=n+1;i++)
{
scanf("%lf",&h),
a[i]=(yuan){((dian){(h/tan(alp))+a[i-1].c.x,0}),0};
}
for(int i=1;i<=n;i++)
scanf("%lf",&r),a[i].r=r;
double L=inf,R=-inf;
for(int i=1;i<=n+1;i++)
L=min(L,a[i].c.x-a[i].r),R=max(R,a[i].c.x+a[i].r);
for(int i=1;i<=n;i++)
{
double d=a[i+1].c.x-a[i].c.x;
if(cmp(d-fabs(a[i].r-a[i+1].r))<0) continue;
double sina=(a[i].r-a[i+1].r)/d,cosa=sqrt(1-sina*sina);
l[++num]=(xian){(dian){a[i].c.x+a[i].r*sina,a[i].r*cosa},(dian){a[i+1].c.x+a[i+1].r*sina,a[i+1].r*cosa}};
}
// printf("%.2lf\n",Simpson(L,R,Calc(L,R)));
double fl=f(L),fr=f(R),fm=f((L+R)/2);
printf("%.2lf\n",sps(L,R,(fl+4*fm+fr)*(R-L)/6,fl,fr,fm));
return 0;
}
/*
2 0.72953
9.61090 0.26021 4.47090
2.98979 2.00036
*/

bzoj 1502 月下柠檬树【Simpson积分】的更多相关文章

  1. BZOJ 1502 月下柠檬树(simpson积分)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...

  2. 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分

    [BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...

  3. BZOJ 1502 月下柠檬树(simpson积分)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1502 题意:给出如下一棵分层的树,给出每层的高度和每个面的半径.光线是平行的,与地面夹角 ...

  4. 【BZOJ1502】【NOI2005】月下柠檬树 simpson 积分

    特别提醒:eps至少要5e-6 首先我们来研究下平行光对投影的影响. 一个二维的图形,若它与光屏平行,那么不论平行光与光屏的夹角为多少,所得图形与原图形全等的(只是位置会有影响) 通过这么一分析,我们 ...

  5. BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1070  Solved: 596[Submit][Status] ...

  6. [NOI2005]月下柠檬树(计算几何+积分)

    题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔 地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思 索着人生的哲理. 李哲是一个喜爱思考的孩子,当他看 ...

  7. 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1017  Solved: 562[Submit][Status] ...

  8. 【bzoj 1502】月下柠檬树

    月下柠檬树 题意 求n个圆与他们的公切线的定积分. 解法 求出圆的公切线就可以了. 特别坑的一点 : 最两端的圆,有可能会被其他的圆所包含,所以要重新求一下最左端与最右端. 比较坑的一点 : 精度要设 ...

  9. [BZOJ1502]月下柠檬树(自适应辛普森积分)

    1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1387  Solved: 739[Submit][Status] ...

随机推荐

  1. centos7 网络设置

    1.显示所有连接的网络接口 ip link show 2.激活或禁止网络接口 sudo ip link set up/down {dev} 3.将一个或多个IPv4地址分配给网络接口$ sudo ip ...

  2. js的offsetWidth,clientWidth

    js元素的offsetWidth与clientWidth很相似,因此放在一起记录. clientWidth与offsetWidth clientWidth=元素内容区域宽度+水平内边距padding. ...

  3. 转: 使用valgrind检查内存问题

    作者:gfree.wind@gmail.com 博客:blog.focus-linux.net   linuxfocus.blog.chinaunix.net    本文的copyleft归gfree ...

  4. LINUX 下 ipv6 socket 编程

    大家都知道,随着互联网上主机数量的增多,现有的32位IP地址已经不够用了,所以推出了下一代IP地址IPv6,写网络程序的要稍微改变一下现有的网络程序适应IPv6网络是相当容易的事.对于我们来说就是IP ...

  5. sqlite中常见的问题总结

    一.sqlite中不能使用日期进行相减,执行结果无效 例如:SELECT count(*) as cnt FROM DayBanalces WHERE (date(ofDay)- date('2013 ...

  6. 【神乎其神】这些EXCEL技巧,太神奇了,赶紧收藏!

    转:http://learning.sohu.com/20160215/n437421658.shtml

  7. 【Nginx】Nginx的配置

    配置文件为.conf文件 一.块配置项 块配置项由一个块配置项名和一对大括号组成.具体如下: events{ ... } http{ upstream backend{ server 127.0.0. ...

  8. DacningLinks实现

    本文简单分析DancingLinks实现中的数据结构设计,给出了精确覆盖问题及其扩展问题的代码.并应用于数独问题. 先简单描写叙述一下精确覆盖问题: 给定一个N*M的01矩阵,从中选中若干行,这些行向 ...

  9. ES文件浏览器 WIFI 查看电脑文件怎么弄

    1 开启来宾账户   2 右击要共享的文件夹,添加Guest共享(如果只是要查看共享的资源,权限级别为读取即可)   3 共享之后,网络路径就是"\\"+你的计算机名+" ...

  10. MySQL存储结构的使用

    前言 今天公司老大让我做一个MySQL的调研工作,是关于MySQL的存储结构的使用.这里我会通过3个样例来介绍一下MySQL中存储结构的使用过程,以及一些须要注意的点. 笔者环境 系统:Windows ...