Eagle (AKA Mohamed Ahmed) lives in a city consists of n intersections connected by n-1 roads, in a way that can go from any intersection to any other intersection moving along some of these roads.

Every day he starts walking in the city following a simple strategy; if he's at some intersection he has to pick one of the roads connected to it at random such that he hasn't walked through it before and walk through it and and if there isn't any, he stops and goes home.

His only problem is that he's afraid of dogs. He doesn't even like seeing dogs. So he's wondering in the worst scenario, how many dogs he'll have to see during his walk until he stops if he starts walking at some intersection. Can you help him?

Input

The input starts with an integer T (1 <= T <= 10), the number of test cases. following T blocks describing each test case.

Each block starts with a line containing an integer n (2 <= n <= 105), the number of intersections in the city. Intersections are numbers 1 through n.

Followed by n-1 lines each containing integers u, v, (1 <= u, v <= n) and d (1 <= d <= 109), the numbers of intersections at the end of this road and the number od dogs Eagle will see walking in this road.

Output

For each test case print a line containing n integers, the ith integer represents the maximum number of dogs Eagle might see if he starts his walk at intersection i.

Example

Input:
1
4
1 2 3
3 2 4
3 4 5
Output:
12 9 7 12

题意:问树上每个点最远可以走到哪里,不能回走。

结论:先走树的直径,那么最远路的终点一定是直径的端点,所以从树的直径的端点dfs两次得到距离,较大的一个就是最远距离。

(不过我队友用DP过了此题,ORZ,后面附图。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cost[maxn<<],cnt,S,T;
long long ans[maxn],dis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v,int d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cost[cnt]=d;
}
void dfs(int u,int fa)
{
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa){
dis[To[i]]=dis[u]+cost[i];
dfs(To[i],u);
}
}
}
int main()
{
int Case,N,u,v,d,i,j;
scanf("%d",&Case);
while(Case--){
scanf("%d",&N); cnt=; S=T=;
for(i=;i<=N;i++) ans[i]=Laxt[i]=;
for(i=;i<N;i++){
read(u); read(v); read(d);
add(u,v,d); add(v,u,d);
}
dis[]=; dfs(,);
for(i=;i<=N;i++) if(dis[i]>dis[S]) S=i;
dis[S]=; dfs(S,);
for(i=;i<=N;i++) {
if(dis[i]>dis[T]) T=i;
if(dis[i]>ans[i]) ans[i]=dis[i];
}
dis[T]=; dfs(T,);
for(i=;i<=N;i++)
if(dis[i]>ans[i]) ans[i]=dis[i];
for(i=;i<N;i++) printf("%lld ",ans[i]);
printf("%lld\n",ans[N]);
}
return ;
}

SPOJ:Eagle and Dogs(求树上每个点最远可以走到哪里---树的直径||DP)的更多相关文章

  1. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  2. poj1985 Cow Marathon (求树的直径)

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 3195   Accepted: 1596 Case ...

  3. [USACO2004][poj1985]Cow Marathon(2次bfs求树的直径)

    http://poj.org/problem?id=1985 题意:就是给你一颗树,求树的直径(即问哪两点之间的距离最长) 分析: 1.树形dp:只要考虑根节点和子节点的关系就可以了 2.两次bfs: ...

  4. HDU 2196 求树上所有点能到达的最远距离

    其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了... 但是乱搞一下还是有80分....可惜没想到正解啊! 所以今天的考试题是: 巡访 (path.pas/c/cpp) Cha ...

  5. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  6. 牛客小白月赛6 C 桃花 dfs 求树上最长直径

    链接:https://www.nowcoder.com/acm/contest/136/C来源:牛客网 题目描述 桃花一簇开无主,可爱深红映浅红.                            ...

  7. [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)

    [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...

  8. 求树上任意一点所能到达的最远距离 - 树上dp

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  9. Codeforces Round #620 (Div. 2)E(LCA求树上两点最短距离)

    LCA求树上两点最短距离,如果a,b之间距离小于等于k并且奇偶性与k相同显然YES:或者可以从a先走到x再走到y再走到b,并且a,x之间距离加b,y之间距离+1小于等于k并且奇偶性与k相同也输出YES ...

随机推荐

  1. android本地存储SharedPreferences

    SharedPreferences是Android中最容易理解的数据存储技术,实际上SharedPreferences处理的就是一个key-value(键值对)SharedPreferences常用来 ...

  2. Python 和 Elasticsearch 构建简易搜索

    Python 和 Elasticsearch 构建简易搜索 作者:白宁超 2019年5月24日17:22:41 导读:件开发最大的麻烦事之一就是环境配置,操作系统设置,各种库和组件的安装.只有它们都正 ...

  3. LeetCode第一题以及时间复杂度的计算

    问题描述:给定一组指定整数数组,找出数组中加和等于特定数的两个数. 函数(方法)twoSum返回这两个数的索引,index1必须小于index2. 另外:你可以假设一个数组只有一组解. 一个栗子: I ...

  4. ArcCatalog中通过ArcSDE向Oracle数据库中导入数据

    将数据导入到Oracle指定的表空间的具体内容如下: 首先,在ArcCatalog中建立指定表空间的数据库连接(要以指定表空间的用户登录): 然后,在ArcCatlog中定位到数据源,选中并拷贝图层; ...

  5. 【Todo】Java学习笔记 100==100 & Reflection API & Optional类详解 & DIP、IoC、DI & token/cookie/session管理会话方式

    为什么1000 == 1000返回为False,而100 == 100会返回为True?   Link Java Reflection API:Link Java8 Optional 类深度解析: L ...

  6. 转:NetBeans的远程Linux C开发实践

    转: http://blog.csdn.net/jacktan/article/details/9268535 一直以来总觉得NetBeans生活在Eclipse的阴影下,同样做为一款不错的基于Jav ...

  7. (六)Unity5.0新特性------新动画功能

     unity 5.0 中的新动画功能 这里是你能够期待的新动画功能高速概述 ! State Machine Behaviours状态机行为 在Unity 5 中,你会能够将StateMachine ...

  8. POJ训练计划1035_Spell checker(串处理/暴力)

    Spell checker Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 18418   Accepted: 6759 De ...

  9. windows下安装elasticsearch6.2.4

    window 下安装 elasticsearch 一.环境搭建需要的环境 1.jdk环境 2.Elasticsearch 3.git 环境 4.node 安装包   二.进行环境的搭建 1.解压Ela ...

  10. 【源代码】LruCache源代码剖析

    上一篇分析了LinkedHashMap源代码,这个Map集合除了拥有HashMap的大部分特性之外.还拥有链表的特点,即能够保持遍历顺序与插入顺序一致. 另外.当我们将accessOrder设置为tr ...