Eagle (AKA Mohamed Ahmed) lives in a city consists of n intersections connected by n-1 roads, in a way that can go from any intersection to any other intersection moving along some of these roads.

Every day he starts walking in the city following a simple strategy; if he's at some intersection he has to pick one of the roads connected to it at random such that he hasn't walked through it before and walk through it and and if there isn't any, he stops and goes home.

His only problem is that he's afraid of dogs. He doesn't even like seeing dogs. So he's wondering in the worst scenario, how many dogs he'll have to see during his walk until he stops if he starts walking at some intersection. Can you help him?

Input

The input starts with an integer T (1 <= T <= 10), the number of test cases. following T blocks describing each test case.

Each block starts with a line containing an integer n (2 <= n <= 105), the number of intersections in the city. Intersections are numbers 1 through n.

Followed by n-1 lines each containing integers u, v, (1 <= u, v <= n) and d (1 <= d <= 109), the numbers of intersections at the end of this road and the number od dogs Eagle will see walking in this road.

Output

For each test case print a line containing n integers, the ith integer represents the maximum number of dogs Eagle might see if he starts his walk at intersection i.

Example

Input:
1
4
1 2 3
3 2 4
3 4 5
Output:
12 9 7 12

题意:问树上每个点最远可以走到哪里,不能回走。

结论:先走树的直径,那么最远路的终点一定是直径的端点,所以从树的直径的端点dfs两次得到距离,较大的一个就是最远距离。

(不过我队友用DP过了此题,ORZ,后面附图。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cost[maxn<<],cnt,S,T;
long long ans[maxn],dis[maxn];
void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=(x<<)+(x<<)+c-'',c=getchar();
}
void add(int u,int v,int d)
{
Next[++cnt]=Laxt[u];
Laxt[u]=cnt;
To[cnt]=v;
cost[cnt]=d;
}
void dfs(int u,int fa)
{
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]!=fa){
dis[To[i]]=dis[u]+cost[i];
dfs(To[i],u);
}
}
}
int main()
{
int Case,N,u,v,d,i,j;
scanf("%d",&Case);
while(Case--){
scanf("%d",&N); cnt=; S=T=;
for(i=;i<=N;i++) ans[i]=Laxt[i]=;
for(i=;i<N;i++){
read(u); read(v); read(d);
add(u,v,d); add(v,u,d);
}
dis[]=; dfs(,);
for(i=;i<=N;i++) if(dis[i]>dis[S]) S=i;
dis[S]=; dfs(S,);
for(i=;i<=N;i++) {
if(dis[i]>dis[T]) T=i;
if(dis[i]>ans[i]) ans[i]=dis[i];
}
dis[T]=; dfs(T,);
for(i=;i<=N;i++)
if(dis[i]>ans[i]) ans[i]=dis[i];
for(i=;i<N;i++) printf("%lld ",ans[i]);
printf("%lld\n",ans[N]);
}
return ;
}

SPOJ:Eagle and Dogs(求树上每个点最远可以走到哪里---树的直径||DP)的更多相关文章

  1. cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!

    2450. 距离 ★★   输入文件:distance.in   输出文件:distance.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 在一个村子里有N个房子,一 ...

  2. poj1985 Cow Marathon (求树的直径)

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 3195   Accepted: 1596 Case ...

  3. [USACO2004][poj1985]Cow Marathon(2次bfs求树的直径)

    http://poj.org/problem?id=1985 题意:就是给你一颗树,求树的直径(即问哪两点之间的距离最长) 分析: 1.树形dp:只要考虑根节点和子节点的关系就可以了 2.两次bfs: ...

  4. HDU 2196 求树上所有点能到达的最远距离

    其实我不是想做这道题的...只是今天考试考了一道类似的题...然后我挂了... 但是乱搞一下还是有80分....可惜没想到正解啊! 所以今天的考试题是: 巡访 (path.pas/c/cpp) Cha ...

  5. POJ1741--Tree (树的点分治) 求树上距离小于等于k的点对数

    Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 12276   Accepted: 3886 Description ...

  6. 牛客小白月赛6 C 桃花 dfs 求树上最长直径

    链接:https://www.nowcoder.com/acm/contest/136/C来源:牛客网 题目描述 桃花一簇开无主,可爱深红映浅红.                            ...

  7. [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树)

    [51nod 1766]树上的最远点对 (树的直径+ST表求lca+线段树) 题面 给出一棵N个点的树,Q次询问一点编号在区间[l1,r1]内,另一点编号在区间[l2,r2]内的所有点对距离最大值.\ ...

  8. 求树上任意一点所能到达的最远距离 - 树上dp

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  9. Codeforces Round #620 (Div. 2)E(LCA求树上两点最短距离)

    LCA求树上两点最短距离,如果a,b之间距离小于等于k并且奇偶性与k相同显然YES:或者可以从a先走到x再走到y再走到b,并且a,x之间距离加b,y之间距离+1小于等于k并且奇偶性与k相同也输出YES ...

随机推荐

  1. SGU104 二维dp

    大致题意: n个东西放在(1.2.3...m)个容器中,先放的必需在后方的左边.a[i][j]表示i号物品放在j容器所得 的价值,求最大价值. 几乎是刚刚开始接触动态规划题,开始我这样想 每个东西一件 ...

  2. 使用javaconfig方式配置spring工程的单元测试

    添加@RunWith(SpringJUnit4ClassRunner.class) @ContextConfiguration(classes = {MoveModelSpringTestConfig ...

  3. js-判断当前页面是否在微信浏览器中打开

    方案一:推荐 var ua = navigator.userAgent.toLowerCase(); var isWinxin = ua.indexOf('micromessenger') != -1 ...

  4. (2)Swing窗体基本设置

    import javax.swing.*; import javax.swing.plaf.FontUIResource; import java.awt.*; import java.util.En ...

  5. luogu P2912 [USACO08OCT]牧场散步Pasture Walking

    题目描述 The N cows (2 <= N <= 1,000) conveniently numbered 1..N are grazing among the N pastures ...

  6. Apache Beam 传 大数据杂谈

    1月10日,Apache软件基金会宣布,Apache Beam成功孵化,成为该基金会的一个新的顶级项目,基于Apache V2许可证开源. 2003年,谷歌发布了著名的大数据三篇论文,史称三驾马车:G ...

  7. oracle学习 第二章 限制性查询和数据的排序 ——03

    这里.我们接着上一小节2.6留下的问题:假设要查询的字符串中含有"_"或"%".又该如何处理呢? 開始今天的学习. 2.7  怎样使用转义(escape)操作符 ...

  8. delphi中Record 和Packed Record的区别

    Record 和Packed Record 第一种不带packed关键字的结构体表明编译器编译时要求进行字对齐,而第二种带packed关键字的结构体表明编译器编译该结构体时不需要进行字对齐,这种方式对 ...

  9. C++与Java语法上的不同

    最近学习算法和刷题基本都是用C++写的程序,在这个过程中,发现C++和Java在语法上有很多相同点,但也有很多不同点,而这些不同点对于已经掌握Java的程序员来说,理解C++代码可能会有些吃力甚至困难 ...

  10. SQL SELECT TOP, LIMIT, ROWNUM 子句

    SQL SELECT TOP, LIMIT, ROWNUM 子句 SQL SELECT TOP 子句 SELECT TOP 子句用于规定要返回的记录的数目. SELECT TOP 子句对于拥有数千条记 ...