题目:https://www.luogu.org/problemnew/show/P4149

仍然是点分治;

不过因为是取 min ,所以不能用容斥,那么子树之间就必须分开算,记录桶时注意这个;

每次 memset 桶会很慢,可以用栈记录修改的地方,然后改回来即可;

注意更新 getrt 中 sum 的方式,可以 dfs 时顺便重新算一下 siz,但也可以利用原树求出来的 siz,判断一下当前的儿子在原树中是儿子还是父亲;

那么就要传个参数,是当前的所有点个数,在原树中是父亲的话就用总个数 - siz[to[i]],这个做法比较快。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=2e5+,maxm=1e6+,inf=0x3f3f3f3f;
int n,K,hd[maxn],ct,to[maxn<<],nxt[maxn<<],w[maxn<<],dis[maxn],siz[maxn];
int sum,rt,tmp[maxm],ans=inf,mx,sta[maxn][],f[maxn],top;
bool vis[maxn];
void add(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; w[ct]=z; hd[x]=ct;}
void getrt(int x,int fa)
{
siz[x]=; int nmx=;//局部变量!
for(int i=hd[x],u;i;i=nxt[i])
{
if((u=to[i])==fa||vis[u])continue;
getrt(u,x);
siz[x]+=siz[u]; nmx=max(nmx,siz[u]);
}
nmx=max(nmx,sum-siz[x]);
if(nmx<mx)mx=nmx,rt=x;
}
void dfs(int x,int fa)//siz 不管的话 RE 2个点
{
siz[x]=;
for(int i=hd[x],u;i;i=nxt[i])
{
if((u=to[i])==fa||vis[u])continue;
dis[u]=dis[x]+w[i]; f[u]=f[x]+;
if(dis[u]<=K)
{
ans=min(ans,f[u]+tmp[K-dis[u]]);
sta[++top][]=dis[u]; sta[top][]=f[u];
}
dfs(u,x);
siz[x]+=siz[u];
}
}
int work(int x,int ss)
{
vis[x]=; int p=;//局部变量
for(int i=hd[x],u;i;i=nxt[i])
{
if(vis[u=to[i]])continue;
dis[u]=w[i]; f[u]=;
if(dis[u]<=K)
{
ans=min(ans,f[u]+tmp[K-dis[u]]);
sta[++top][]=dis[u]; sta[top][]=f[u];
}
dfs(u,);
for(int w;p<=top;p++)tmp[w=sta[p][]]=min(tmp[w],sta[p][]);
}
for(int i=;i<=top;i++)tmp[sta[i][]]=inf; top=;
for(int i=hd[x],u;i;i=nxt[i])
{
if(vis[u=to[i]])continue;
sum=(siz[u]>siz[x]?ss-siz[x]:siz[u]); mx=inf; getrt(u,); work(rt,sum);
//可以这样更新sum //u在原树中是x的儿子或父亲
}
}
int main()
{
scanf("%d%d",&n,&K);
for(int i=,x,y,z;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
add(x,y,z); add(y,x,z);
}
memset(tmp,0x3f,sizeof tmp); tmp[]=;//
sum=n; mx=inf; getrt(,);
work(rt,sum);
printf("%d\n",ans==inf?-:ans);
return ;
}

洛谷 P4149 [ IOI 2011 ] Race —— 点分治的更多相关文章

  1. 模板—点分治B(合并子树)(洛谷P4149 [IOI2011]Race)

    洛谷P4149 [IOI2011]Race 点分治作用(目前只知道这个): 求一棵树上满足条件的节点二元组(u,v)个数,比较典型的是求dis(u,v)(dis表示距离)满足条件的(u,v)个数. 算 ...

  2. 洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP

    洛谷 P4093 [HEOI2016/TJOI2016]序列 CDQ分治优化DP 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他. 玩具上有一个数列,数列中某些项的值可能会 ...

  3. 点分治模板(洛谷P4178 Tree)(树分治,树的重心,容斥原理)

    推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径 ...

  4. 洛谷P4220 [WC2018]通道(边分治+虚树)

    题面 传送门 题解 代码不就百来行么也不算很长丫 虽然这题随机化贪心就可以过而且速度和正解差不多不过我们还是要好好学正解 前置芝士 边分治 米娜应该都知道点分治是个什么东西,而边分治,顾名思义就是对边 ...

  5. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  6. BZOJ4553/洛谷P4093 [HEOI2016/TJOI2016]序列 动态规划 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8672434.html 题目传送门 - BZOJ4553 题目传送门 - 洛谷P4093 题解 设$Li$表示第$ ...

  7. 洛谷$P4149\ [IOI2011]\ Race$ 点分治

    正解:点分治 解题报告: 传送门$QwQ$ 昂先不考虑关于那个长度的限制考虑怎么做? 就开个桶,记录所有边的取值,每次加入边的时候查下是否可行就成$QwQ$ 然后现在考虑加入这个长度的限制?就考虑把这 ...

  8. 洛谷P4149 [IOI2011]Race(点分治)

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK ,且边的数量最小. 输入输出格式 输入格式:   第一行:两个整数 n,kn,k . 第二至 nn 行:每行三个整数,表示一条无向边的 ...

  9. 洛谷 P4149 [IOI2011]Race-树分治(点分治,不容斥版)+读入挂-树上求一条路径,权值和等于 K,且边的数量最小

    P4149 [IOI2011]Race 题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 KK,且边的数量最小. 输入格式 第一行包含两个整数 n, Kn,K. 接下来 n - 1n−1 行 ...

随机推荐

  1. java基础学习日志--Stirng内存案例

    案例一: public class test1 { public static void mb_swap(String Str1,String Str2) { String temp=Str1; St ...

  2. 洛谷——P1120 小木棍 [数据加强版]

    P1120 小木棍 [数据加强版] 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过5050. 现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍 ...

  3. redis 指定端口 启动

    由于资源紧张 需要多创建一个redis实例 重新copy一份实例,然后修改redis.conf文件, 找到port 6379 处修改 端口号 6380 通过下面命令启动就好了 src/redis-se ...

  4. 【Codeforces 600C】Make Palindrome

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 计算出来每个字母出现的次数. 把字典序大的奇数出现次数的字母换成字典序小的奇数出现次数的字母贪心即可. 注意只有一个字母的情况 然后贪心地把字 ...

  5. Shell中的循环语句实例

    1.for循环语句实例1.1 最基本的for循环 #!/bin/bash for x in one two three four do     echo number $x done 注:" ...

  6. POJ 3630

    Phone List Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20894 Accepted: 6532 Descripti ...

  7. Drools介绍与使用

    Drools 是用 Java 语言编写的开放源码规则引擎,使用 Rete 算法对所编写的规则求值.Drools 允许使用声明方式表达业务逻辑.可以使用非 XML 的本地语言编写规则,从而便于学习和理解 ...

  8. Bellman_ford 算法 Currency Exchange POJ1860

    Bellman_ford算法用于寻找正环或者负环! 算法导论: 24.1 The Bellman-Ford algorithm The Bellman-Ford algorithm solves th ...

  9. ECMAScript 6 入门学习笔记(一)——let和const

    一.let ①声明变量 let a = 1: ②只在所在代码块内有效,不影响块以外 ③不存在变量提升(不能先用后声明) ④暂时性死区 let声明的变量“绑定”这个区域,不受外部影响. let声明之前, ...

  10. [bzoj1613][Usaco2008 Jan]Running贝茜的晨练计划_动态规划

    Running贝茜的晨练计划 bzoj-1613 Usaco-2008 Jan 题目大意:题目链接(U组题题意真的是没法概括qwq....). 注释:略. 想法:一眼dp题. 状态:dp[i][j]表 ...