这几天在看opencl编程指南。照着书中的样例实现了sobel算法:

1.结合opencv读取图像,保存到缓冲区中。

2.编写和编译内核。并保存显示处理后的结果。

内核:

const sampler_t sampler = CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
kernel void sobel_rgb(read_only image2d_t src,write_only image2d_t dst)
{
int x = (int)get_global_id(0);
int y = (int)get_global_id(1);
if (x >= get_image_width(src) || y >= get_image_height(src))
return;
float4 p00 = read_imagef(src, sampler, (int2)(x - 1, y - 1));
float4 p10 = read_imagef(src, sampler, (int2)(x, y - 1));
float4 p20 = read_imagef(src, sampler, (int2)(x + 1, y - 1));
float4 p01 = read_imagef(src, sampler, (int2)(x - 1, y));
float4 p21 = read_imagef(src, sampler, (int2)(x + 1, y));
float4 p02 = read_imagef(src, sampler, (int2)(x - 1, y + 1));
float4 p12 = read_imagef(src, sampler, (int2)(x, y + 1));
float4 p22 = read_imagef(src, sampler, (int2)(x + 1, y + 1));
float3 gx = -p00.xyz + p20.xyz + 2.0*(p21.xyz - p01.xyz) - p02.xyz + p22.xyz;
float3 gy = -p00.xyz + p02.xyz + 2.0*(p21.xyz - p10.xyz) - p20.xyz + p22.xyz;
float3 g = native_sqrt(gx*gx + gy*gy);
write_imagef(dst,(int2)(x,y),(float4)(g.x,g.y,g.z,1.0f));
}
// TODO: Add OpenCL kernel code here.

c++源代码:

//
// Book: OpenCL(R) Programming Guide
// Authors: Aaftab Munshi, Benedict Gaster, Timothy Mattson, James Fung, Dan Ginsburg
// ISBN-10: 0-321-74964-2
// ISBN-13: 978-0-321-74964-2
// Publisher: Addison-Wesley Professional
// URLs: http://safari.informit.com/9780132488006/
// http://www.openclprogrammingguide.com
// // ImageFilter2D.cpp
//
// This example demonstrates performing gaussian filtering on a 2D image using
// OpenCL
//
// Requires FreeImage library for image I/O:
// http://freeimage.sourceforge.net/ #include <iostream>
#include <fstream>
#include <sstream>
#include <string.h>
#include <opencv.hpp> #ifdef __APPLE__
#include <OpenCL/cl.h>
#else
#include <CL/cl.h>
#endif #include "FreeImage.h" ///
// Create an OpenCL context on the first available platform using
// either a GPU or CPU depending on what is available.
//
cl_context CreateContext()
{
cl_int errNum;
cl_uint numPlatforms;
cl_platform_id firstPlatformId;
cl_context context = NULL; // First, select an OpenCL platform to run on. For this example, we
// simply choose the first available platform. Normally, you would
// query for all available platforms and select the most appropriate one.
errNum = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);
if (errNum != CL_SUCCESS || numPlatforms <= 0)
{
std::cerr << "Failed to find any OpenCL platforms." << std::endl;
return NULL;
} // Next, create an OpenCL context on the platform. Attempt to
// create a GPU-based context, and if that fails, try to create
// a CPU-based context.
cl_context_properties contextProperties[] =
{
CL_CONTEXT_PLATFORM,
(cl_context_properties)firstPlatformId,
0
};
context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_GPU,
NULL, NULL, &errNum);
if (errNum != CL_SUCCESS)
{
std::cout << "Could not create GPU context, trying CPU..." << std::endl;
context = clCreateContextFromType(contextProperties, CL_DEVICE_TYPE_CPU,
NULL, NULL, &errNum);
if (errNum != CL_SUCCESS)
{
std::cerr << "Failed to create an OpenCL GPU or CPU context." << std::endl;
return NULL;
}
} return context;
} ///
// Create a command queue on the first device available on the
// context
//
cl_command_queue CreateCommandQueue(cl_context context, cl_device_id *device)
{
cl_int errNum;
cl_device_id *devices;
cl_command_queue commandQueue = NULL;
size_t deviceBufferSize = -1; // First get the size of the devices buffer
errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &deviceBufferSize);
if (errNum != CL_SUCCESS)
{
std::cerr << "Failed call to clGetContextInfo(...,GL_CONTEXT_DEVICES,...)";
return NULL;
} if (deviceBufferSize <= 0)
{
std::cerr << "No devices available.";
return NULL;
} // Allocate memory for the devices buffer
devices = new cl_device_id[deviceBufferSize / sizeof(cl_device_id)];
errNum = clGetContextInfo(context, CL_CONTEXT_DEVICES, deviceBufferSize, devices, NULL);
if (errNum != CL_SUCCESS)
{
std::cerr << "Failed to get device IDs";
return NULL;
} // In this example, we just choose the first available device. In a
// real program, you would likely use all available devices or choose
// the highest performance device based on OpenCL device queries
commandQueue = clCreateCommandQueue(context, devices[0], 0, NULL);
if (commandQueue == NULL)
{
std::cerr << "Failed to create commandQueue for device 0";
return NULL;
} *device = devices[0];
delete[] devices;
return commandQueue;
} ///
// Create an OpenCL program from the kernel source file
//
cl_program CreateProgram(cl_context context, cl_device_id device, const char* fileName)
{
cl_int errNum;
cl_program program; std::ifstream kernelFile(fileName, std::ios::in);
if (!kernelFile.is_open())
{
std::cerr << "Failed to open file for reading: " << fileName << std::endl;
return NULL;
} std::ostringstream oss;
oss << kernelFile.rdbuf(); std::string srcStdStr = oss.str();
const char *srcStr = srcStdStr.c_str();
program = clCreateProgramWithSource(context, 1,
(const char**)&srcStr,
NULL, NULL);
if (program == NULL)
{
std::cerr << "Failed to create CL program from source." << std::endl;
return NULL;
} errNum = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
if (errNum != CL_SUCCESS)
{
// Determine the reason for the error
char buildLog[16384];
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG,
sizeof(buildLog), buildLog, NULL); std::cerr << "Error in kernel: " << std::endl;
std::cerr << buildLog;
clReleaseProgram(program);
return NULL;
} return program;
} ///
// Cleanup any created OpenCL resources
//
void Cleanup(cl_context context, cl_command_queue commandQueue,
cl_program program, cl_kernel kernel, cl_mem imageObjects[2],
cl_sampler sampler)
{
for (int i = 0; i < 2; i++)
{
if (imageObjects[i] != 0)
clReleaseMemObject(imageObjects[i]);
}
if (commandQueue != 0)
clReleaseCommandQueue(commandQueue); if (kernel != 0)
clReleaseKernel(kernel); if (program != 0)
clReleaseProgram(program); if (sampler != 0)
clReleaseSampler(sampler); if (context != 0)
clReleaseContext(context); } ///
// Load an image using the FreeImage library and create an OpenCL
// image out of it
//
cl_mem LoadImage(cl_context context, char *fileName, int &width, int &height)
{
//FREE_IMAGE_FORMAT format = FreeImage_GetFileType(fileName, 0);
//FIBITMAP* image = FreeImage_Load(format, fileName); //// Convert to 32-bit image
//FIBITMAP* temp = image;
//image = FreeImage_ConvertTo32Bits(image);
//FreeImage_Unload(temp); //width = FreeImage_GetWidth(image);
//height = FreeImage_GetHeight(image);
/*char *buffer = new char[width * height * 4];
memcpy(buffer, FreeImage_GetBits(image), width * height * 4); FreeImage_Unload(image);*/
cv::Mat image1 = cv::imread(fileName);
width = image1.cols;
height = image1.rows;
char *buffer = new char[width * height * 4];
int w = 0;
for (int v = height - 1; v >= 0; v--)
{
for (int u = 0; u <width; u++)
{
buffer[w++] = image1.at<cv::Vec3b>(v, u)[0];
buffer[w++] = image1.at<cv::Vec3b>(v, u)[1];
buffer[w++] = image1.at<cv::Vec3b>(v, u)[2];
w++;
}
} // Create OpenCL image
cl_image_format clImageFormat;
clImageFormat.image_channel_order = CL_RGBA;
clImageFormat.image_channel_data_type = CL_UNORM_INT8; cl_int errNum;
cl_mem clImage;
clImage = clCreateImage2D(context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
&clImageFormat,
width,
height,
0,
buffer,
&errNum); if (errNum != CL_SUCCESS)
{
std::cerr << "Error creating CL image object" << std::endl;
return 0;
} return clImage;
} ///
// Save an image using the FreeImage library
//
bool SaveImage(char *fileName, char *buffer, int width, int height)
{
FREE_IMAGE_FORMAT format = FreeImage_GetFIFFromFilename(fileName);
FIBITMAP *image = FreeImage_ConvertFromRawBits((BYTE*)buffer, width,
height, width * 4, 32,
0xFF000000, 0x00FF0000, 0x0000FF00);
return FreeImage_Save(format, image, fileName);
} ///
// Round up to the nearest multiple of the group size
//
size_t RoundUp(int groupSize, int globalSize)
{
int r = globalSize % groupSize;
if (r == 0)
{
return globalSize;
}
else
{
return globalSize + groupSize - r;
}
} ///
// main() for HelloBinaryWorld example
//
int main(int argc, char** argv)
{
cl_context context = 0;
cl_command_queue commandQueue = 0;
cl_program program = 0;
cl_device_id device = 0;
cl_kernel kernel = 0;
cl_mem imageObjects[2] = { 0, 0 };
cl_sampler sampler = 0;
cl_int errNum; /*if (argc != 3)
{
std::cerr << "USAGE: " << argv[0] << " <inputImageFile> <outputImageFiles>" << std::endl;
return 1;
}*/ // Create an OpenCL context on first available platform
context = CreateContext();
if (context == NULL)
{
std::cerr << "Failed to create OpenCL context." << std::endl;
return 1;
} // Create a command-queue on the first device available
// on the created context
commandQueue = CreateCommandQueue(context, &device);
if (commandQueue == NULL)
{
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Make sure the device supports images, otherwise exit
cl_bool imageSupport = CL_FALSE;
clGetDeviceInfo(device, CL_DEVICE_IMAGE_SUPPORT, sizeof(cl_bool),
&imageSupport, NULL);
if (imageSupport != CL_TRUE)
{
std::cerr << "OpenCL device does not support images." << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Load input image from file and load it into
// an OpenCL image object
int width, height;
char *src0 = "C:/Users/jiang/Desktop/image/tu1.jpg";
imageObjects[0] = LoadImage(context, src0, width, height);
if (imageObjects[0] == 0)
{
std::cerr << "Error loading: " << std::string(src0) << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Create ouput image object
cl_image_format clImageFormat;
clImageFormat.image_channel_order = CL_RGBA;
clImageFormat.image_channel_data_type = CL_UNORM_INT8;
imageObjects[1] = clCreateImage2D(context,
CL_MEM_WRITE_ONLY,
&clImageFormat,
width,
height,
0,
NULL,
&errNum); if (errNum != CL_SUCCESS)
{
std::cerr << "Error creating CL output image object." << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Create sampler for sampling image object
sampler = clCreateSampler(context,
CL_FALSE, // Non-normalized coordinates
CL_ADDRESS_CLAMP_TO_EDGE,
CL_FILTER_NEAREST,
&errNum); if (errNum != CL_SUCCESS)
{
std::cerr << "Error creating CL sampler object." << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Create OpenCL program
//program = CreateProgram(context, device, "ImageFilter2D.cl");
program = CreateProgram(context, device, "Sobel.cl");
if (program == NULL)
{
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
}
// Create OpenCL kernel
kernel = clCreateKernel(program, "sobel_rgb", NULL);
if (kernel == NULL)
{
std::cerr << "Failed to create kernel" << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Set the kernel arguments
errNum = clSetKernelArg(kernel, 0, sizeof(cl_mem), &imageObjects[0]);
errNum |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &imageObjects[1]);
/*errNum |= clSetKernelArg(kernel, 2, sizeof(cl_sampler), &sampler);
errNum |= clSetKernelArg(kernel, 3, sizeof(cl_int), &width);
errNum |= clSetKernelArg(kernel, 4, sizeof(cl_int), &height);*/
if (errNum != CL_SUCCESS)
{
std::cerr << "Error setting kernel arguments." << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} size_t localWorkSize[2] = { 16, 16 };
size_t globalWorkSize[2] = { RoundUp(localWorkSize[0], width),
RoundUp(localWorkSize[1], height) }; // Queue the kernel up for execution
errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 2, NULL,
globalWorkSize, localWorkSize,
0, NULL, NULL);
if (errNum != CL_SUCCESS)
{
std::cerr << "Error queuing kernel for execution." << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} // Read the output buffer back to the Host
char *buffer = new char[width * height * 4];
size_t origin[3] = { 0, 0, 0 };
size_t region[3] = { width, height, 1 };
errNum = clEnqueueReadImage(commandQueue, imageObjects[1], CL_TRUE,
origin, region, 0, 0, buffer,
0, NULL, NULL);
if (errNum != CL_SUCCESS)
{
std::cerr << "Error reading result buffer." << std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 1;
} std::cout << std::endl;
std::cout << "Executed program succesfully." << std::endl; //memset(buffer, 0xff, width * height * 4);
// Save the image out to disk
char *saveImage = "C:/Users/jiang/Desktop/image/tu2.jpg";
//std::cout << buffer << std::endl;
cv::Mat imageColor = cv::imread(src0);
cv::Mat imageColor2;
imageColor2.create(imageColor.rows, imageColor.cols, imageColor.type());
int w = 0;
for (int v = imageColor2.rows-1; v >=0; v--)
{
for (int u =0 ; u <imageColor2.cols; u++)
{
imageColor2.at<cv::Vec3b>(v, u)[0] = buffer[w++];
imageColor2.at<cv::Vec3b>(v, u)[1] = buffer[w++];
imageColor2.at<cv::Vec3b>(v, u)[2] = buffer[w++];
w++;
}
}
cv::imshow("image", imageColor2);
cv::imwrite(saveImage, imageColor2);
cv::waitKey(0);
/*if (!SaveImage(saveImage, buffer, width, height))
{
std::cerr << "Error writing output image: " << saveImage<< std::endl;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
delete[] buffer;
return 1;
}*/ delete[] buffer;
Cleanup(context, commandQueue, program, kernel, imageObjects, sampler);
return 0;
}

opencl+opencv实现sobel算法的更多相关文章

  1. Sobel算法

    最近看了一些Sobel算法,并试了一下,源码如下: private void Sobel(Bitmap img) { int width = img.Width; int height = img.H ...

  2. OpenCV实现KNN算法

    原文 OpenCV实现KNN算法 K Nearest Neighbors 这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值.这种方 ...

  3. OpenCL + OpenCV 图像旋转

    ▶ 使用 OpenCV 从文件读取彩色的 png 图像,旋转一定角度以后写回文件 ● 代码,核函数 // rotate.cl //__constant sampler_t sampler = CLK_ ...

  4. java 在centos6.5+eclipse环境下调用opencv实现sift算法

    java 在centos6.5+eclipse环境下调用opencv实现sift算法,代码如下: import org.opencv.core.Core; import org.opencv.core ...

  5. OPENCV下SIFT算法使用方法笔记

    这几天继续在看Lowe大神的SIFT神作,看的眼花手脚抽筋.也是醉了!!!!实在看不下去,来点干货.我们知道opencv下自带SIFT特征检测以及MATCH匹配的库,这些库完全可以让我们进行傻瓜似的操 ...

  6. 用OpenCV实现Photoshop算法(三): 曲线调整

    http://blog.csdn.net/c80486/article/details/52499919 系列文章: 用OpenCV实现Photoshop算法(一): 图像旋转 用OpenCV实现Ph ...

  7. OpenCV中Camshitf算法学习(补充)

    结合OpenCV中Camshitf算法学习,做一些简单的补充,包括: 实现全自动跟随的一种方法 参考opencv中的相关demo,可以截取目标物体的图片,由此预先计算出其色彩投影图,用于实际的目标跟随 ...

  8. 基于OpenCV的KNN算法实现手写数字识别

    基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...

  9. 14FPGA综设之图像边沿检测的sobel算法

    连续学习FPGA基础课程接近一个月了,迎来第一个有难度的综合设计,图像的边沿检测算法sobel,用verilog代码实现算法功能. 一设计功能 (一设计要求) (二系统框图) 根据上面的系统,Veri ...

随机推荐

  1. 获取minist数据并转换成lmdb

    caffe本身是没有数据集的,但在data目录下有获取数据的一些脚本.MNIST,一个经典的手写数字库,包含60000个训练样本和10000个测试样本,每个样本为28*28大小的黑白图片,手写数字为0 ...

  2. js 发送短信验证码倒计时

    html <input type="button" id="btn" value="免费获取验证码" onclick="se ...

  3. formatDate() 格式化日期

    function datefmt(milSec, format) { var oldTime = Number(milSec); //得到毫秒数 // 日期格式转换 var t = new Date( ...

  4. vue 中slot 的具体用法

    子组件 <template> <div class="slotcontent"> <ul> <!--<slot></sl ...

  5. Android Studio + Genymotion模拟器安装与配置

    一.Android studio 下载与安装 https://developer.android.google.cn/studio/index.html 进入谷歌官方链接下载Android studi ...

  6. 去面试Python工程师,这几个基础问题一定要能回答,Python面试题No4

    今天的面试题以基础为主,去面试Python工程师,这几个基础问题不能答错 第1题:列表和元组有什么不同? 列表和元组是Python中最常用的两种数据结构,字典是第三种. 相同点: 都是序列 都可以存储 ...

  7. json pickle shelve hashlib collections time

    import json # Json模块提供了四个功能:dumps.dump.loads.load dic = {'k1':'v1','k2':'v2','k3':'v3'} str_dic = js ...

  8. UvaLive 4872 Underground Cables (最小生成树)

    题意: 就是裸的最小生成树(MST), 完全图, 边长是实数. 分析: 算是复习一下MST把 方法一: prim 复杂度(n^2) #include <bits/stdc++.h> usi ...

  9. PAT 1073. 多选题常见计分法

    PAT 1073. 多选题常见计分法 批改多选题是比较麻烦的事情,有很多不同的计分方法.有一种最常见的计分方法是:如果考生选择了部分正确选项,并且没有选择任何错误选项,则得到50%分数:如果考生选择了 ...

  10. TCP传输的三次握手四次挥手策略

    为了准确无误地数据送达目标处,TCP协议采用了三次握手策略.用TCP协议把数据包送出去后,TCP不会对传送后的情况置之不理,它一定会向对方确认是否成功送达.握手中使用了TCP的标志:SYN和ACK 发 ...