scikit-learn:3. Model selection and evaluation
參考:http://scikit-learn.org/stable/model_selection.html
有待翻译,敬请期待:
- 3.1. Cross-validation: evaluating estimator performance
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47099275
- 3.2. Grid Search: Searching for estimator parameters
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47100091
- 3.2.1. Exhaustive Grid Search
- 3.2.2. Randomized Parameter
Optimization - 3.2.3. Tips for parameter search
- 3.2.4. Alternatives
to brute force parameter search- 3.2.4.1. Model specific cross-validation
- 3.2.4.1.1. sklearn.linear_model.ElasticNetCV
- 3.2.4.1.2. sklearn.linear_model.LarsCV
- 3.2.4.1.3. sklearn.linear_model.LassoCV
- 3.2.4.1.4. sklearn.linear_model.LassoLarsCV
- 3.2.4.1.5. sklearn.linear_model.LogisticRegressionCV
- 3.2.4.1.6. sklearn.linear_model.MultiTaskElasticNetCV
- 3.2.4.1.7. sklearn.linear_model.MultiTaskLassoCV
- 3.2.4.1.8. sklearn.linear_model.OrthogonalMatchingPursuitCV
- 3.2.4.1.9. sklearn.linear_model.RidgeCV
- 3.2.4.1.10. sklearn.linear_model.RidgeClassifierCV
- 3.2.4.2. Information Criterion
- 3.2.4.3. Out of Bag Estimates
- 3.2.4.3.1. sklearn.ensemble.RandomForestClassifier
- 3.2.4.3.2. sklearn.ensemble.RandomForestRegressor
- 3.2.4.3.3. sklearn.ensemble.ExtraTreesClassifier
- 3.2.4.3.4. sklearn.ensemble.ExtraTreesRegressor
- 3.2.4.3.5. sklearn.ensemble.GradientBoostingClassifier
- 3.2.4.3.6. sklearn.ensemble.GradientBoostingRegressor
- 3.2.4.1. Model specific cross-validation
- 3.3. Model evaluation: quantifying the quality of predictions
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47121611
- 3.3.1.
The scoring parameter: defining model evaluation rules - 3.3.2. Classification metrics
- 3.3.2.1. From
binary to multiclass and multilabel - 3.3.2.2. Accuracy score
- 3.3.2.3. Confusion matrix
- 3.3.2.4. Classification report
- 3.3.2.5. Hamming loss
- 3.3.2.6. Jaccard
similarity coefficient score - 3.3.2.7. Precision, recall
and F-measures - 3.3.2.8. Hinge loss
- 3.3.2.9. Log loss
- 3.3.2.10. Matthews correlation
coefficient - 3.3.2.11. Receiver
operating characteristic (ROC) - 3.3.2.12. Zero one loss
- 3.3.2.1. From
- 3.3.3. Multilabel ranking
metrics - 3.3.4. Regression metrics
- 3.3.5. Clustering metrics
- 3.3.6. Dummy estimators
- 3.3.1.
- 3.4. Model persistence
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47143539
- 3.5. Validation curves: plotting scores to evaluate models
- 翻译文章參考:http://blog.csdn.net/mmc2015/article/details/47144197
scikit-learn:3. Model selection and evaluation的更多相关文章
- 学习笔记之Model selection and evaluation
学习笔记之scikit-learn - 浩然119 - 博客园 https://www.cnblogs.com/pegasus923/p/9997485.html 3. Model selection ...
- Scikit-learn:模型选择Model selection
http://blog.csdn.net/pipisorry/article/details/52250983 选择合适的estimator 通常机器学习最难的一部分是选择合适的estimator,不 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- 转:机器学习 规则化和模型选择(Regularization and model selection)
规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Spark2 Model selection and tuning 模型选择与调优
Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- 机器学习 Regularization and model selection
Regularization and model selection 假设我们为了一个学习问题尝试从几个模型中选择一个合适的模型.例如,我们可能用一个多项式回归模型hθ(x)=g(θ0+θ1x+θ2x ...
随机推荐
- 08JavaScript数学与日期时间对象
JavaScript数学与日期时间对象 5.1.3数学(Math)对象 <script> //欧拉常量,自然对数的底(约等于2.718); document.write(Math.E+&q ...
- print keys %map_function 输出 散列的值: OK_funcsplit_funcpackage_VAR
my %map_function = ( 88 "OK_func" => "open_statement", 89 &qu ...
- hdfs深入:03、hdfs的架构以及副本机制和block块存储
HDFS分布式文件系统设计目标 1. 硬件错误 由于集群很多时候由数量众多的廉价机组成,使得硬件错误成为常态 2. 数据流访问 所有应用以流的方式访问数 ...
- leetcode-169求众数
求众数 思路: 记录每个元素出现的次数,然后查找到众数 代码: class Solution: def majorityElement(self, nums: List[int]) -> int ...
- mysql-5.7.17-winx64免安装配置
一,下载mysql-5.7.17-winx64.zip 地址:https://dev.mysql.com/downloads/file/?id=467269 二,解压到自己的某个磁盘:data文件夹和 ...
- hive 删除表内容
TRUNCATE:truncate用于删除所有的行,这个行为在hive元存储删除数据是不可逆的delect:用于删除特定行条件,你可以从给定表中删除所有的行insert overwrite table ...
- Automation 的 ReportFlow
ReportFlow: // click the Grid icon and switch to grid page public void changeToGrid() // click the A ...
- [ C语言 ] 迷宫 迷宫生成器 [ 递归与搜索 ]
[原创]转载请注明出处 [浙江大学 程序设计专题] [地图求解器] 本题目要求输入一个迷宫地图,输出从起点到终点的路线. 基本思路是从起点(Sx,Sy)每次枚举该格子上下左右四个方向,直到走到终点(T ...
- [USACO12FEB]附近的牛Nearby Cows
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 18.9.22 noip模拟赛
此题为找规律.期望100 实际100 #include<cstdio> #include<cstring> #include<iostream> #include& ...