剑指Offer面试题11(Java版):数值的整数次方
题目:实现函数double Power(double base,int exponent),求base的exponent次方。不得使用库函数,同一时候不须要考虑大数问题
1、自以为非常easy的解法:
因为不须要考虑大数问题。这道题看起来非常easy。可能不少应聘者在看到题目30秒后就能写出例如以下的代码:
public double powerWithExponent(double base,int exponent){
double result = 1.0;
for(int i = 1;i<= exponent;i++){
result = result*base;
}
return result;
}
不错遗憾的是。写的快不一定就能得到面试官的青睐,由于面试官会问输入的指数(exponent)小于1即 是0和负数的时候怎么办?上面的代码全然没有考虑,仅仅包含了指数为正数的情况。
2、全面但不够高效的解法,我们离Offer已经不远了
我们知道当指数为负数的时候,能够先对指数求绝对值。然后算出次方的结果之后再取倒数。既然有求倒数,我们非常自然的就要想到有没有可能对0求倒数,假设对0求倒数怎么办?当底数base是零且指数是负数的时候,我们不做特殊的处理,就会发现对0求倒数从而导致程序执行出错。怎么告诉函数的调用者出现了这样的错误?在Java中能够抛出异常来解决。
最后须要指出的是,因为0的0次方在数学上没有意义的。因此不管是输出0还是1都是能够接收的。但这都须要和面试官说清楚,表明我们已经考虑到了这个边界值了。
有了这些相对而言已经全面非常多的考虑,我们就能够把最初的代码改动例如以下:
/**
* 题目:实现函数double Power(double base,int exponent),求base的exponent次方。不得使用库函数,同一时候不须要考虑大数问题
* 对于这道题,要考虑四种情况:
* 1、底数为0,指数为负数的情况,无意义
* 2、指数为0,返回1
* 3、指数为负数。返回1.0/base,-exponent
* 4、指数正数,base,exponent
*/
package swordForOffer; /**
* @author JInShuangQi
*
* 2015年7月30日
*/
public class E11Power { public double power(double base,int exponent) throws Exception{
double result = 0.0;
if(equal(base,0.0) && exponent<0){
throw new Exception("0的负数次幂无意义");
}
if(equal(exponent,0)){
return 1.0;
}
if(exponent <0){
result= powerWithExponent(1.0/base, -exponent);
}
else{
result = powerWithExponent(base,exponent);
}
return result;
}
private double powerWithExponent(double base,int exponent){
double result = 1.0;
for(int i = 1;i<= exponent;i++){
result = result*base;
}
return result;
}
//推断两个double型数据,计算机有误差
private boolean equal(double num1,double num2){
if((num1-num2>-0.0000001) && (num1-num2<0.0000001)){
return true;
}else{
return false;
}
}
public static void main(String[] args) throws Exception{
E11Power test = new E11Power();
System.out.println(test.power(3, -1));
}
}
因为计算机表示小数(包含float和double型小数)都会有误差。我们不能直接用等号(==)推断两个小数是否相等。假设两个小数的差的绝对值非常小,比方小于0.0000001,就能够觉得他们相等。
此时我们考虑得已经非常周详了,已经可以得到非常多面试官的要求了。
可是假设我们碰到的面试官是一个在效率上追求完美的人,那么他有可能提醒我们函数PowerWithExponent还有更快的办法。
3、全面而高效的解法。确保我们能拿到Offer
假设输入的指数exponent为32,我们在函数powerWithExponent的循环中须要做31次乘方。但我们能够换一种思路考虑:我们的目标是求出一个数字的32次方。假设我们已经知道了它的16次方。那么仅仅要16次放的基础上再平方一次就能够了。
而16次方又是8次方的平方。这样以此类推。我们求32次方仅仅须要5次乘方:先求平方。在平方的基础上求4次方,在4次方的基础上求8次方,在8次方的基础上求16次方。最后在16此方的基础上求32次方。
也就是说我们能够利用以下这个公示求a的n次方:
这个公式就是我们前面利用O(logn)时间求斐波那契数列时。讨论的公式。这个公式非常easy就能用递归实现。
新的PowerWithExponent代码例如以下:
private double powerWithExponent2(double base,int exponent){
if(exponent == 0)
return 1;
if(exponent == 1)
return base;
double result = powerWithExponent2(base,exponent >>1);
result *= result;
if((exponent&0x1) == 1)
result *=base;
return result;
}
最后再提醒一个细节:我们用右移运算取代除2,用位与运算符取代了求余运算符(%)来推断一个数是奇数还是偶数。位运算的效率比乘除法及求余运算的效率要高非常多。
既然要优化代码,我们就把优化做到极致。
剑指Offer面试题11(Java版):数值的整数次方的更多相关文章
- 《剑指offer》— JavaScript(12)数值的整数次方
数值的整数次方 题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方. 思路一 考察指数的正负以及底数是否为零的几种情形: 将指数转换 ...
- 剑指offer面试题14(Java版):调整数组顺序使奇数位于偶数的前面
题目:输入一个整数数组.实现一个函数来调整该数组中数字的顺序.使得全部奇数位于数组的前半部分.全部偶数位于数组的后半部分. 1.基本实现: 假设不考虑时间复杂度,最简单的思路应该是从头扫描这个数组,每 ...
- 剑指offer——面试题11:旋转数组的最小数字
#include"iostream" using namespace std; int GetMinNumber(int *data,int len) { ,right=len-, ...
- 剑指Offer:面试题11——数值的整数次方(java实现)
题目描述: 实现函数double Power(double base, int exponent),求base的exponent次方,不得使用库函数,同时不需要考虑大数问题 思路:本题的重点考察内容是 ...
- 剑指Offer:面试题32——从1到n整数中1出现的次数(java实现)
问题描述: 输入一个整数n,求1到n这n个整数的十进制表示中1出现的次数.例如输入12,从1到12这些整数中包含1的数字有1,10,11,12,1一共出现了5次. 思路:(不考虑时间效率的解法,肯定不 ...
- 数值的整数次方(剑指offer面试题11)
实现函数 double Power(double base, int exponent),即乘方运算. 考虑问题 exponet < 0 , 可以转化为 1.0 / Power(base, -1 ...
- 剑指Offer第36题—Java版
本题使用归并排序的思想,结合归并排序,写出的算法解. //数组中的逆序对 public static int InversePairs(int[] array){ if(array==null||ar ...
- 剑指offer——面试题11:快速排序
#include"iostream" #include"random" using namespace std; /* void Swap(int &a ...
- 剑指offer——面试题20:表示数值的字符串
#include"iostream" using namespace std; bool IsInt(const char **str); bool IsUnsignInt(con ...
随机推荐
- 分享下自己的EmpireofCode进攻策略 https://empireofcode.com/ https://empireofcode.com/game/#
# 没什么用,该游戏的模块调用不友好,取数据难import queue from battle import commander # import math unit_client = command ...
- POJ 1252 Euro Efficiency(最短路 完全背包)
题意: 给定6个硬币的币值, 问组成1~100这些数最少要几个硬币, 比如给定1 2 5 10 20 50, 组成40 可以是 20 + 20, 也可以是 50 -10, 最少硬币是2个. 分析: 这 ...
- jQuery+ajax城市联动
分享一下自己最近写的城市联动.技术使用ajax+jQuery实现. 首先请看前台的javascript代码. 以下是连个实现异步加载的方法. <script type="text/ja ...
- hexo干货系列:(一)hexo+gitHub搭建个人独立博客
前言 一直想要一个自己的独立博客,但是觉得申请域名+服务器的太麻烦了就一直没有实现.偶然机会发现Hexo这个优秀的静态博客框架,再搭配现在流行的gitHub,简直是完美写博客的黄金搭档(免费+方便). ...
- hust 1017 dancing links 精确覆盖模板题
最基础的dancing links的精确覆盖题目 #include <iostream> #include <cstring> #include <cstdio> ...
- php装饰者模式
php装饰者模式 装饰模式指的是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. 示例: A.B.C编辑同一篇文章. class ...
- python学习之-- 进程 和 线程
python 进程/线程详解 进程定义:以一个整体的形式暴露给操作系统管理,它里面包含对各种资源的调用,内存的管理,网络接口的调用等等,对各种资源管理的集合,就可以叫做一个进程. 线程定义:线程是操作 ...
- Intersection--poj1410(判断线段与矩形的关系)
http://poj.org/problem?id=1410 题目大意:给你一个线段和矩形的对角两点 如果相交就输出'T' 不想交就是'F' 注意: 1,给的矩形有可能不是左上 右下 所以要先判 ...
- 洛谷—— P1714 切蛋糕
https://www.luogu.org/problem/show?pid=1714 题目描述 今天是小Z的生日,同学们为他带来了一块蛋糕.这块蛋糕是一个长方体,被用不同色彩分成了N个相同的小块,每 ...
- com.sun.xxx.utils不存在问题的解决
com.sun.org.apache.xml.internal.security.utils does not exist问题的解决 在网上找个很多的答案,但我的问题没有解决,睡一晚上后,被我误打误撞 ...