题目大意:给出n条线段,问是否存在一条直线,使得n条线段在直线上的投影有至少一个公共点。

题目思路:如果假设成立,那么作该直线的垂线l,该垂线l与所有线段相交,且交点可为线段中的某两个交点

证明:若有l和所有线段相交,则可保持l和所有线段相交,左右平移l到和某一线段交于端点停止(“移不动了”)。然后绕这个交点旋转。也是转到“转不动了”(和另一线段交于其一个端点)为止。这样就找到了一个新的l满足题意,而且经过其中两线段的端点。

如何判断直线是否与线段相交如果线段的两个端点在直线的两侧,那么线段与直线相交,因此可利用叉积来经行判断。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<stdio.h>
#include<stdlib.h>
#include<queue>
#include<math.h>
#include<map>
#define INF 0x3f3f3f3f
#define MAX 100005
#define Temp 1000000000
#define MOD 1000000007 using namespace std; int n; struct node
{
double x1,y1,x2,y2;
}a[MAX]; int check(int pos,double x1,double y1,double x2,double y2)//求叉积
{
double x3=a[pos].x1,y3=a[pos].y1,x4=a[pos].x2,y4=a[pos].y2;
if(fabs(x1-x2)<1e- && fabs(y1-y2)<1e-)
return ;
double op1=(x2-x1)*(y3-y1)-(x3-x1)*(y2-y1);
double op2=(x2-x1)*(y4-y1)-(x4-x1)*(y2-y1);
if(op1*op2 > (1e-))
return ;
return ;
} int Find(double x1,double y1,double x2,double y2)
{
for(int i=;i<n;i++)
{
if(!check(i,x1,y1,x2,y2))
return ;
}
return ;
} int solve()
{
for(int i=;i<n;i++)//枚举端点
{
for(int j=i+;j<n;j++)
{
if(Find(a[i].x1,a[i].y1,a[i].x2,a[i].y2))//上方线段
return ;
if(Find(a[i].x1,a[i].y1,a[j].x1,a[j].y1))//两条线段左端连线
return ;
if(Find(a[i].x1,a[i].y1,a[j].x2,a[j].y2))//两条线段左上右下连线
return ;
if(Find(a[i].x2,a[i].y2,a[j].x1,a[j].y1))//两条线段右上左下连线
return ;
if(Find(a[j].x1,a[j].y1,a[j].x2,a[j].y2))//下方线段
return ;
if(Find(a[i].x2,a[i].y2,a[j].x2,a[j].y2))//两条线段有段连线
return ;
}
}
return ;
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%lf%lf%lf%lf",&a[i].x1,&a[i].y1,&a[i].x2,&a[i].y2);
}
if(n<)//如果有一个或两个线段特判一下
{
printf("Yes!\n");
continue;
}
int ok=solve();
if(ok)
printf("Yes!\n");
else
printf("No!\n");
}
return ;
}

Segments POJ 3304 直线与线段是否相交的更多相关文章

  1. POJ 3304 Segments(判断直线与线段是否相交)

    题目传送门:POJ 3304 Segments Description Given n segments in the two dimensional space, write a program, ...

  2. poj 3304(直线与线段相交)

    传送门:Segments 题意:线段在一个直线上的摄影相交 求求是否存在一条直线,使所有线段到这条直线的投影至少有一个交点 分析:可以在共同投影处作原直线的垂线,则该垂线与所有线段都相交<==& ...

  3. hdu 3304(直线与线段相交)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12042   Accepted: 3808 Descrip ...

  4. poj 3304 Segments(计算直线与线段之间的关系)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10921   Accepted: 3422 Descrip ...

  5. C - Segments POJ - 3304 (判断线段相交)

    题目链接:https://vjudge.net/contest/276358#problem/C 题目大意:给你n条线段,问你是否存在一条线段使得所有的线段在这条直线的投影至少具有一个交点? 具体思路 ...

  6. POJ 1039 直线和线段相交

    题意: 题意很好理解,从左边射过来的光线,最远能经过管道到右边多少距离. 分析: 光线一定经过一个上端点和一个下端点,这一点很容易想到.然后枚举上下端点即可 #include <iostream ...

  7. POJ 3304 Segments (直线与线段是否相交)

    题目链接 题意 : 能否找出一条直线使得所有给定的线段在该直线上的投影有一个公共点. 思路 : 假设存在一条直线a使得所有线段在该直线上的投影有公共点,则必存在一条垂直于直线a的直线b,直线b与所有线 ...

  8. Segments - POJ 3304 (判断直线与线段是否相交)

    题目大意:给出一些线段,然后判断这些线段的投影是否有可能存在一个公共点.   分析:如果这些线段的投影存在一个公共点,那么过这个公共点作垂线一定与所有的直线都想交,于是题目转化成是否存在一个直线可以经 ...

  9. POJ 3304 Segments (直线和线段相交判断)

    Segments Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7739   Accepted: 2316 Descript ...

随机推荐

  1. POJ 3268 Silver Cow Party(dij+邻接矩阵)

    ( ̄▽ ̄)" #include<iostream> #include<cstdio> #include<algorithm> #include<cs ...

  2. 自己写deque

    //deque /* what is a deque? In Chinese, it's called "双端队列". It's different from a queue. I ...

  3. .Net Core 第三方工具包整理

    本地日志[NLog.Extensions.Logging]:https://github.com/NLog/NLog.Extensions.Logging

  4. 【Linux】zookeeper构造伪集群

    1.在一台机器装安装3个zk server,构建伪集群模式安装步骤如下:1.下载zookeeper,下载地址:http://mirror.bit.edu.cn/apache/zookeeper/zoo ...

  5. Python 学习笔记11

    如何要飞得高,就该把天空忘掉.如果时时想着梦想,那就寸步难行.因为会产生很强的挫败感.倾空自己的杯子,把自己放空,才能放得进去东西. 这两天一直在鼓捣要用python写一个博客出来.先是下载了一个放到 ...

  6. 【洛谷P1352】没有上司的舞会

    [洛谷P1352]没有上司的舞会 x舷售 锚」翅θ 但是 拙臃 蓄ⅶ榔 暄条熨卫 翘ヴ馇 表现无愧于雪月工作室的核心管理 爸惚扎掬 颇瓶 芟缆肝 貌痉了 洵┭笫装 嗝◇裴腋 褓劂埭 ...

  7. 存储过程sql语句

    select count(virtualacc) into v_count  from T_ATMMONITOR WHERE virtualacc = v_number; 用于存储过程中,是把coun ...

  8. 十六、oracle 索引

    一.管理索引-原理介绍索引是用于加速数据存取的数据对象.合理的使用索引可以大大降低i/o次数,从而提高数据访问性能.索引有很多种我们主要介绍常用的几种:为什么添加了索引后,会加快查询速度呢? 二.创建 ...

  9. 关于Unity中的涉及到Attribute的相关概念整理(@WhiteTaken)

    这两天事情比较多,没有来得及更新,现在把我这两天看的attributes相关内容进行整理. 涉及到的相关概念包括: C#中的特性概念及用法 创建自己的特性以及通过反射访问特性 C#中的特性概念以及用法 ...

  10. 《Windows驱动开发技术详解》之驱动程序的同步处理

    中断请求级 中断请求被分为软件中断和硬件中断两种,这些中断都映射成不同级别的中断请求级.每个中断请求都有各自的优先级别,正在运行的线程随时都可以被中断打断,进入到中断处理程序.优先级高的中断来临时,处 ...