LeetCode OJ 84. Largest Rectangle in Histogram
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
For example,
Given heights = [2,1,5,6,2,3]
,
return 10
.
【题目分析】
题目很容易理解,给定一个非负数组代表的直方图,求出图中包含的最大的矩形的面积。
【思路】
1.这题的一个基本思想是以每一个bar为最低点,向左右遍历直到遇到比他小的bar或边界。这样就能找到一个此bar为最低点的矩形面积。遍历所有的bar之后即可找到最大的矩形面积。但是向左右遍历寻找比他小的bar的时间复杂度是O(n),在加上遍历一遍所有的bar,总的时间复杂度将为O(n*n),是无法通过所有数据的。我们在水平方向任意画一条线,如果有条和这条线相交,我们找出相交的矩阵中最大的那个。示例如下:
当线的高度是2时,相交的矩阵有两个,较大的那个面积是8。
当线的高度是3时,相交的矩阵有两个,较大的那个面积时6。
当线的高度是5时,相交的矩阵有一个,面积是10。
重复上面的步骤,找到的最大值是10.这个过程很简单,只需要遍历所有可能出现的高度,然后找到所有出现的矩阵中面积最大的那一个。但是这个过程的算法复杂度较高,为O(N2).
java代码:
public class Solution {
public int largestRectangleArea(int[] heights) {
if(heights.length == 0) return 0;
if(heights.length == 1) return heights[0]; int curlen = 0;
int maxS = 0, curS = 0; for(int i = 0; i < heights.length; i++){
curlen = heights[i];
curS = 0;
for(int j = 0; j < heights.length; j++){
if(heights[j] >= preminlen) curS += preminlen;
else{
maxS = Math.max(curS, maxS);
curS = 0;
}
}
maxS = Math.max(curS, maxS);
}
return maxS;
}
}
2. 我们需要寻找一种时间复杂度更低的寻找一个bar左右边界的算法。在网上流传了一个设计极其巧妙的方法,借助一个stack可以将时间复杂度降为O(n)。
这种算法的思想是维护一个递增的栈,这个栈保存了元素在数组中的位置。 这样在栈中每一个左边的bar都比本身小,所以左边就天然有界了,也就是左边界就是左边的一个bar。遍历一遍height数组,在将height数组入栈的时候,如果当前元素height[i]比栈顶元素小,则我们又找到了栈顶元素的右边界。因此我们在此时就可以计算以栈顶元素为最低bar的矩形面积了,因为左右边界我们都已经找到了,而且是在O(1)的时间复杂度内找到的。然后就可以将栈顶元素出栈了。这样每出栈一个元素,即计算以此元素为最低点的矩形面积。当最终栈空的时候我们就计算出了以所有bar为最低点的矩形面积。为保证让所有元素都出栈,我们在height数组最后加一个0,因为一个元素要出栈必须要遇到一个比他小的元素,也就是右边界。
- 如果已知height数组是升序的,应该怎么做?
比如1,2,5,7,8
那么就是(1*5) vs. (2*4) vs. (5*3) vs. (7*2) vs. (8*1)
也就是max(height[i]*(size-i))
- 使用栈的目的就是构造这样的升序序列,按照以上方法求解。
但是height本身不一定是升序的,应该怎样构建栈?
比如2,1,5,6,2,3
(1)2进栈。s={2}, result = 0
(2)1比2小,不满足升序条件,因此将2弹出,并记录当前结果为2*1=2。
将2替换为1重新进栈。s={1,1}, result = 2
(3)5比1大,满足升序条件,进栈。s={1,1,5},result = 2
(4)6比5大,满足升序条件,进栈。s={1,1,5,6},result = 2
(5)2比6小,不满足升序条件,因此将6弹出,并记录当前结果为6*1=6。s={1,1,5},result = 6
2比5小,不满足升序条件,因此将5弹出,并记录当前结果为5*2=10(因为已经弹出的5,6是升序的)。s={1,1},result = 10
2比1大,将弹出的5,6替换为2重新进栈。s={1,1,2,2,2},result = 10
(6)3比2大,满足升序条件,进栈。s={1,1,2,2,2,3},result = 10
栈构建完成,满足升序条件,因此按照升序处理办法得到上述的max(height[i]*(size-i))=max{3*1, 2*2, 2*3, 2*4, 1*5, 1*6}=8<10
综上所述,result=10
java代码:
public class Solution {
public int largestRectangleArea(int[] height) {
int len = height.length;
Stack<Integer> s = new Stack<Integer>();
int maxArea = 0;
for(int i = 0; i <= len; i++){
int h = (i == len ? 0 : height[i]);
if(s.isEmpty() || h >= height[s.peek()]){
s.push(i);
}else{
int tp = s.pop();
maxArea = Math.max(maxArea, height[tp] * (s.isEmpty() ? i : i - 1 - s.peek()));
i--;
}
}
return maxArea;
}
}
LeetCode OJ 84. Largest Rectangle in Histogram的更多相关文章
- 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...
- 【LeetCode】84. Largest Rectangle in Histogram
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- 【一天一道LeetCode】#84. Largest Rectangle in Histogram
一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given n ...
- 【LeetCode】84. Largest Rectangle in Histogram——直方图最大面积
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- 【Leetcode】84. Largest Rectangle in Histogram 85. Maximal Rectangle
问题描述: 84:直方图最大面积. 85:0,1矩阵最大全1子矩阵面积. 问题分析: 对于84,如果高度递增的话,那么OK没有问题,不断添加到栈里,最后一起算面积(当然,面积等于高度h * disPo ...
- LeetCode 84. Largest Rectangle in Histogram 单调栈应用
LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...
- 84. Largest Rectangle in Histogram
https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...
- 刷题84. Largest Rectangle in Histogram
一.题目说明 题目84. Largest Rectangle in Histogram,给定n个非负整数(每个柱子宽度为1)形成柱状图,求该图的最大面积.题目难度是Hard! 二.我的解答 这是一个 ...
- 84. Largest Rectangle in Histogram *HARD* -- 柱状图求最大面积 85. Maximal Rectangle *HARD* -- 求01矩阵中的最大矩形
1. Given n non-negative integers representing the histogram's bar height where the width of each bar ...
随机推荐
- XML+AJAX
- 2.开启TFTP,NFS,SAMBA,SSH服务
一.TFTP (1)dpkg -s tftp-hpa查看服务器端是否安装 (2)如果没安装 sudo apt-get install tftpd-hpa sudo apt-get install tf ...
- sql第三天
->完整的select语句及执行顺序(必须记住) 5...select 5.2->distinct 7...top n [percent] 5.1->列名 聚合函数(1.2-> ...
- PHP静态延迟绑定和普通静态效率简单对比
只是一个简单的小实验,对比了下 延迟绑定 和 非延迟的效率 延迟绑定主要就是使用 static 关键字来替代原来的 self ,但功能非常强大了 实验代码: class A { protected s ...
- PAT乙级1006. 换个格式输出整数 (15)
让我们用字母B来表示“百”.字母S表示“十”,用“12...n”来表示个位数字n(<10),换个格式来输出任一个不超过3位的正整数.例如234应该被输出为BBSSS1234,因为它有2个“百”. ...
- Xcode使用小结2
刷新时间慢的时候用timer定时器 以下内容为借用,作者:FlyElephant出处:http://www.cnblogs.com/xiaofeixiang iOS开发-NSOperation与GCD ...
- django模板系统基础
模板系统基础Django模板是一个string文本,它用来分离一个文档的展现和数据 模板定义了placeholder和表示多种逻辑的tags来规定文档如何展现 通常模板用来输出HTML,但是Djang ...
- WPF 限制Textbox输入的内容
限制文本框TextBox的输入内容,在很多场景都有应用.举个例子,现在文本框中,只能输入0.1.2.3.4.5.6.7.8.9.“|”这11个字符. 限制输入0-9很容易实现,关键是这个“|”符号.它 ...
- c#发送http请求注意
这里要注意几个点:第一就是编码,如果编码不对,容易中文乱码第二就是ContentType 如果设置不对,有可能连方法都调试不进去(我api用的是MVC的普通controller)第三就是paramDa ...
- Centos6.5环境中安装vsftp服务
1.检查vsftp是否安装 命令:rpm -qa|grep vsftpd 若已经安装,则显示相关的版本信息,否则什么也没有. 也可以输入find -name "vsftpd" -p ...