Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,
Given heights = [2,1,5,6,2,3],
return 10.

【题目分析】

题目很容易理解,给定一个非负数组代表的直方图,求出图中包含的最大的矩形的面积。

【思路】

1.这题的一个基本思想是以每一个bar为最低点,向左右遍历直到遇到比他小的bar或边界。这样就能找到一个此bar为最低点的矩形面积。遍历所有的bar之后即可找到最大的矩形面积。但是向左右遍历寻找比他小的bar的时间复杂度是O(n),在加上遍历一遍所有的bar,总的时间复杂度将为O(n*n),是无法通过所有数据的。我们在水平方向任意画一条线,如果有条和这条线相交,我们找出相交的矩阵中最大的那个。示例如下:

当线的高度是2时,相交的矩阵有两个,较大的那个面积是8。

当线的高度是3时,相交的矩阵有两个,较大的那个面积时6。

当线的高度是5时,相交的矩阵有一个,面积是10。

重复上面的步骤,找到的最大值是10.这个过程很简单,只需要遍历所有可能出现的高度,然后找到所有出现的矩阵中面积最大的那一个。但是这个过程的算法复杂度较高,为O(N2).

java代码:

 public class Solution {
public int largestRectangleArea(int[] heights) {
if(heights.length == 0) return 0;
if(heights.length == 1) return heights[0]; int curlen = 0;
int maxS = 0, curS = 0; for(int i = 0; i < heights.length; i++){
curlen = heights[i];
curS = 0;
for(int j = 0; j < heights.length; j++){
if(heights[j] >= preminlen) curS += preminlen;
else{
maxS = Math.max(curS, maxS);
curS = 0;
}
}
maxS = Math.max(curS, maxS);
}
return maxS;
}
}

2. 我们需要寻找一种时间复杂度更低的寻找一个bar左右边界的算法。在网上流传了一个设计极其巧妙的方法,借助一个stack可以将时间复杂度降为O(n)。

这种算法的思想是维护一个递增的栈,这个栈保存了元素在数组中的位置。 这样在栈中每一个左边的bar都比本身小,所以左边就天然有界了,也就是左边界就是左边的一个bar。遍历一遍height数组,在将height数组入栈的时候,如果当前元素height[i]比栈顶元素小,则我们又找到了栈顶元素的右边界。因此我们在此时就可以计算以栈顶元素为最低bar的矩形面积了,因为左右边界我们都已经找到了,而且是在O(1)的时间复杂度内找到的。然后就可以将栈顶元素出栈了。这样每出栈一个元素,即计算以此元素为最低点的矩形面积。当最终栈空的时候我们就计算出了以所有bar为最低点的矩形面积。为保证让所有元素都出栈,我们在height数组最后加一个0,因为一个元素要出栈必须要遇到一个比他小的元素,也就是右边界。

  • 如果已知height数组是升序的,应该怎么做?

比如1,2,5,7,8

那么就是(1*5) vs. (2*4) vs. (5*3) vs. (7*2) vs. (8*1)

也就是max(height[i]*(size-i))

  • 使用栈的目的就是构造这样的升序序列,按照以上方法求解。

但是height本身不一定是升序的,应该怎样构建栈?

比如2,1,5,6,2,3

(1)2进栈。s={2}, result = 0

(2)1比2小,不满足升序条件,因此将2弹出,并记录当前结果为2*1=2。

将2替换为1重新进栈。s={1,1}, result = 2

(3)5比1大,满足升序条件,进栈。s={1,1,5},result = 2

(4)6比5大,满足升序条件,进栈。s={1,1,5,6},result = 2

(5)2比6小,不满足升序条件,因此将6弹出,并记录当前结果为6*1=6。s={1,1,5},result = 6

2比5小,不满足升序条件,因此将5弹出,并记录当前结果为5*2=10(因为已经弹出的5,6是升序的)。s={1,1},result = 10

2比1大,将弹出的5,6替换为2重新进栈。s={1,1,2,2,2},result = 10

(6)3比2大,满足升序条件,进栈。s={1,1,2,2,2,3},result = 10

栈构建完成,满足升序条件,因此按照升序处理办法得到上述的max(height[i]*(size-i))=max{3*1, 2*2, 2*3, 2*4, 1*5, 1*6}=8<10

综上所述,result=10

java代码:

 public class Solution {
public int largestRectangleArea(int[] height) {
int len = height.length;
Stack<Integer> s = new Stack<Integer>();
int maxArea = 0;
for(int i = 0; i <= len; i++){
int h = (i == len ? 0 : height[i]);
if(s.isEmpty() || h >= height[s.peek()]){
s.push(i);
}else{
int tp = s.pop();
maxArea = Math.max(maxArea, height[tp] * (s.isEmpty() ? i : i - 1 - s.peek()));
i--;
}
}
return maxArea;
}
}

LeetCode OJ 84. Largest Rectangle in Histogram的更多相关文章

  1. 【LeetCode】84. Largest Rectangle in Histogram 柱状图中最大的矩形(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 单调栈 日期 题目地址: https://leetc ...

  2. 【LeetCode】84. Largest Rectangle in Histogram

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  3. 【一天一道LeetCode】#84. Largest Rectangle in Histogram

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given n ...

  4. 【LeetCode】84. Largest Rectangle in Histogram——直方图最大面积

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  5. 【Leetcode】84. Largest Rectangle in Histogram 85. Maximal Rectangle

    问题描述: 84:直方图最大面积. 85:0,1矩阵最大全1子矩阵面积. 问题分析: 对于84,如果高度递增的话,那么OK没有问题,不断添加到栈里,最后一起算面积(当然,面积等于高度h * disPo ...

  6. LeetCode 84. Largest Rectangle in Histogram 单调栈应用

    LeetCode 84. Largest Rectangle in Histogram 单调栈应用 leetcode+ 循环数组,求右边第一个大的数字 求一个数组中右边第一个比他大的数(单调栈 Lee ...

  7. 84. Largest Rectangle in Histogram

    https://www.cnblogs.com/grandyang/p/4322653.html 1.存储一个单调递增的栈 2.如果你不加一个0进去,[1]这种情况就会输出结果0,而不是1 3.单调递 ...

  8. 刷题84. Largest Rectangle in Histogram

    一.题目说明 题目84. Largest Rectangle in Histogram,给定n个非负整数(每个柱子宽度为1)形成柱状图,求该图的最大面积.题目难度是Hard! 二.我的解答 这是一个 ...

  9. 84. Largest Rectangle in Histogram *HARD* -- 柱状图求最大面积 85. Maximal Rectangle *HARD* -- 求01矩阵中的最大矩形

    1. Given n non-negative integers representing the histogram's bar height where the width of each bar ...

随机推荐

  1. 关于_cmd

    实际上是该方法名(@selector的名称). 比如: - (void)someCategoryMethod { NSString *string = objc_getAssociatedObject ...

  2. CodeForces 670B Game of Robots

    简单题. #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #inclu ...

  3. ios UIImageView异步加载网络图片

    方法1:在UI线程中同步加载网络图片 UIImageView *headview = [[UIImageView alloc] initWithFrame:CGRectMake(0, 0, 40, 4 ...

  4. Linux软件安装管理 - CentOS

    ---恢复内容开始--- 1. 软件包管理简介 1.1 源码包 - 脚本安装包 1.2 二进制包(RPM包,系统默认包) - 依赖性 2. rpm命令管理(Redhat Package Manager ...

  5. js作用域详解

    // 作用域:(1)域:空间.范围.区域……     (2) 作用:读.写 script 全局变量.全局函数 自上而下 函数 由里到外 浏览器: “JS解析器” 1)“找一些东西” :var func ...

  6. 【Python】0/1背包、动态规划

    0/1背包问题:在能承受一定重量的背包中,放入重量不同,价值不同的几件物品,怎样放能让背包中物品的价值最大? 比如,有三件物品重量w,价值v分别是 w=[5,3,2] v=[9,7,8] 包的容量是5 ...

  7. Mac下如何使用Vim

    帖子是转载的,原帖地址 Mac OX其实已经默认装好了vim了.不需要再安装Macvim https://ruby-china.org/topics/4905 Mac开发利器之程序员编辑器MacVim ...

  8. pageoffice 开发笔记

    开发环境:vs2015,mvc,razor pageoffice版本:Server-Version=3.2.0.1 OCX-Version=2,0,4,6 开发模式:pageofficeLink方式 ...

  9. 在Java中system.out.println使用方法

    先输入sysout,然后输入辅助快捷键:Alt+/ 常用快捷键: 1. ctrl+shift+r:打开资源 这可能是所有快捷键组合中最省时间的了.这组快捷键可以打开工作区中任何一个文件,只需要按下文件 ...

  10. NDEF消息解析实例[转]

      问题:按照NDEF消息格式来解析下列Hex串? D1 02 1F 53 70 91 01 0E 54 02  65 6E 68 65 6C 6C 6F 20 77 6F  72 6C 64 51 ...