Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13319   Accepted: 4282

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned;
it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their
places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height
between him and that extremity. 



Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from
this line represents the height of the soldier who has the code k (1 <= k <= n). 



There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

Romania OI 2002

题目要求:给出n个人排成一排。踢出一些人。让每一个人都能看到最左端,或最后端,最小的踢出人数是?

计算出正序和倒序的最长上升子序列,然后统计:有两种可能。一种是当中一个人是中间。那个人的身高最高。还有事两个人的身高同样。这两个人位置在中间,统计出最长的可能出现的队伍长度,计算出最小的踢出人数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp1[1200] , dp2[1200] ;
double h[1200] ;
int main()
{
int i , j , n , min1 ;
while(scanf("%d", &n)!=EOF)
{
min1 = 1200 ;
h[0] = 0 ; h[n+1] = 0 ;
for(i = 1 ; i <= n ; i++)
scanf("%lf", &h[i]);
memset(dp1,0,sizeof(dp1));
for(i = 1 ; i <= n ; i++)
{
for(j = 0 ; j < i ; j++)
if( h[j] < h[i] && dp1[j]+1 > dp1[i] )
dp1[i] = dp1[j]+1 ;
}
memset(dp2,0,sizeof(dp2));
for(i = n ; i >= 1 ; i--)
{
for(j = n+1 ; j > i ; j--)
if( h[j] < h[i] && dp2[j]+1 > dp2[i] )
dp2[i] = dp2[j]+1 ;
}
for(i = 1 ; i <= n ; i++)
{
for(j = i ; j <= n ; j++)
{
if(i == j)
min1 = min(min1,n-(dp1[i]+dp2[j]-1) );
else
min1 = min(min1, n-( dp1[i]+dp2[j] ) );
}
}
printf("%d\n", min1);
}
}

poj1836--Alignment(dp,最长上升子序列变形)的更多相关文章

  1. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  2. poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 53414   Accepted: 18449 Desc ...

  3. uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)

    题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...

  4. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  5. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  6. ACM: 强化训练-Beautiful People-最长递增子序列变形-DP

    199. Beautiful People time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard ...

  7. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  8. hdu1503 最长公共子序列变形

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1503 题意:给出两个字符串 要求输出包含两个字符串的所有字母的最短序列.注意输出的顺序不能 ...

  9. HOJ Recoup Traveling Expenses(最长递减子序列变形)

    A person wants to travel around some places. The welfare in his company can cover some of the airfar ...

随机推荐

  1. chrome你这是入侵OSX了么?

    今天突然发现安装chrome的应用后,会在Dock中出现如下图标,点击即可启动chrome相关应用,很是方便.

  2. Java与C#的语法区别(不断更新中...)

    1.static关键字: 在java中静态成员能够被对象和类名调用: 在C#中,静态成员只能被类调用不能被对象调用. 2.for循环: 在java中可以在for前面添加标记,然后在for循环中可以br ...

  3. windows和linux套接字中的select机制浅析

    先来谈谈为什么会出现select函数,也就是select是解决什么问题的? 平常使用的recv函数时阻塞的,也就是如果没有数据可读,recv就会一直阻塞在那里,这是如果有另外一个连接过来,就得一直等待 ...

  4. 按钮的图标 Button icons-JQUERY MOBILE 1.0正式版中文手册

    按钮的图标 Button icons-JQUERY MOBILE 1.0正式版中文手册 data-icon属性可以被用来创建如下所示的图标 左箭头data-icon="arrow-l&quo ...

  5. Android学习笔记(九)——更复杂的进度对话框

    显示操作进度的对话框 1.使用上一篇创建的同一项目.在activity_main.xml文件里加入一个Button: <Button android:id="@+id/btn_dial ...

  6. Java设计模式---外观模式

    外观模式(Facade) 外观模式的意图是:为子系统提供一个接口,便于它的使用.   解释: 简单的说,外观模式就是封装多个上层应用需要的方法,使得上层调用变得简单,为上层提供简单的接口,是设计模式中 ...

  7. C++学习之路—多态性与虚函数(一)利用虚函数实现动态多态性

    (根据<C++程序设计>(谭浩强)整理,整理者:华科小涛,@http://www.cnblogs.com/hust-ghtao转载请注明) 多态性是面向对象程序设计的一个重要特征.顾名思义 ...

  8. JS - 提示是否删除

    1. OnClientClick="return confirm('确定要删除吗?') 2.自定义函数: 函数: <script type ="text/javascript ...

  9. 发掘ListBox的潜力(一):自动调整横向滚动条宽度

    <自绘ListBox的两种效果>一文帖出之后,从反馈信息来看,大家对这种小技巧还是很认同.接下来我将继续围绕ListBox写一系列的文章,进一步发掘ListBox的潜力,其中包括:自动调整 ...

  10. Irvine的专业汇编网站

    http://asmirvine.com/ http://download.csdn.net/download/stupid_boy2007/3890853 http://download.csdn. ...