Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13319   Accepted: 4282

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned;
it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their
places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height
between him and that extremity. 



Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from
this line represents the height of the soldier who has the code k (1 <= k <= n). 



There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

Romania OI 2002

题目要求:给出n个人排成一排。踢出一些人。让每一个人都能看到最左端,或最后端,最小的踢出人数是?

计算出正序和倒序的最长上升子序列,然后统计:有两种可能。一种是当中一个人是中间。那个人的身高最高。还有事两个人的身高同样。这两个人位置在中间,统计出最长的可能出现的队伍长度,计算出最小的踢出人数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp1[1200] , dp2[1200] ;
double h[1200] ;
int main()
{
int i , j , n , min1 ;
while(scanf("%d", &n)!=EOF)
{
min1 = 1200 ;
h[0] = 0 ; h[n+1] = 0 ;
for(i = 1 ; i <= n ; i++)
scanf("%lf", &h[i]);
memset(dp1,0,sizeof(dp1));
for(i = 1 ; i <= n ; i++)
{
for(j = 0 ; j < i ; j++)
if( h[j] < h[i] && dp1[j]+1 > dp1[i] )
dp1[i] = dp1[j]+1 ;
}
memset(dp2,0,sizeof(dp2));
for(i = n ; i >= 1 ; i--)
{
for(j = n+1 ; j > i ; j--)
if( h[j] < h[i] && dp2[j]+1 > dp2[i] )
dp2[i] = dp2[j]+1 ;
}
for(i = 1 ; i <= n ; i++)
{
for(j = i ; j <= n ; j++)
{
if(i == j)
min1 = min(min1,n-(dp1[i]+dp2[j]-1) );
else
min1 = min(min1, n-( dp1[i]+dp2[j] ) );
}
}
printf("%d\n", min1);
}
}

poj1836--Alignment(dp,最长上升子序列变形)的更多相关文章

  1. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  2. poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 53414   Accepted: 18449 Desc ...

  3. uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)

    题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...

  4. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  5. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  6. ACM: 强化训练-Beautiful People-最长递增子序列变形-DP

    199. Beautiful People time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard ...

  7. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  8. hdu1503 最长公共子序列变形

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1503 题意:给出两个字符串 要求输出包含两个字符串的所有字母的最短序列.注意输出的顺序不能 ...

  9. HOJ Recoup Traveling Expenses(最长递减子序列变形)

    A person wants to travel around some places. The welfare in his company can cover some of the airfar ...

随机推荐

  1. Oracle闪回flashback总结

    1.说明: Ø  采用的技术. 使用的是多个技术. 1.      闪回日志 2.      回收站 3.      回滚段 无法使用回收站的操作 Drop table xxx purge; Drop ...

  2. Android ListView条目全选功能,不用checkbox实现!

    大家好,翻了翻曾经的笔记,发现了一个我特别标记的功能,那就是ListView全选功能,顿时想起了我那个时候苦逼的生涯,因为我大学机械出身,大学毕业了都不知道什么叫代码,在58干了一段销售.实在是干不下 ...

  3. Python 中的类的相关操作

    构造函数 构造函数是任何类都有的特殊方法.当要创建一个类时,就要调用构造函数.他的名字是__init__.init的前后分别是两个下划线.时间类Time的构造函数如下: >>> cl ...

  4. ASP.NET、WinForm、C# - 配置文件信息读取 [ Web.config || Appconfig ]

    <configuration> <appSettings> <add key="name" value="HF_Ultrastrong&qu ...

  5. Not able to reset SmartRF04DD

    今天在使用使用CC2540的时候,想下载个程序到CC2540底板上,结果出现Not able to reset SmartRF04DD的错误.如下图 经过一番摸索,最终是按下CCDEBUG上的rese ...

  6. Serialize a Binary Tree or a General Tree

    For a binary tree, preorder traversal may be enough. For example, _    /   \           /     /  \ 50 ...

  7. JQuery - 点击图片显示大图

    效果: 目录结构: 代码: <%@ Page Language="C#" AutoEventWireup="true" CodeFile="De ...

  8. HDU 4893 Wow! Such Sequence!(2014年多校联合 第三场 G)(线段树)

    磨了一天的线段树,不能说完全搞清楚,只能说有一个大概的了解,靠着模板才把这道题A了,只能说太弱~~! 题意: 初始时有一字符串,全为0. 三种操作: 1 k d - add  把d加到第k个数上去2 ...

  9. boost.asio系列——io_service

    IO模型 io_service对象是asio框架中的调度器,所有异步io事件都是通过它来分发处理的(io对象的构造函数中都需要传入一个io_service对象). asio::io_service i ...

  10. win32 sdk 列表视图控件绘制

    ////////////////////////////////////////////////////////////// LRESULT ListViewCustomDraw(HWND hwnd, ...