Alignment
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13319   Accepted: 4282

Description

In the army, a platoon is composed by n soldiers. During the morning inspection, the soldiers are aligned in a straight line in front of the captain. The captain is not satisfied with the way his soldiers are aligned;
it is true that the soldiers are aligned in order by their code number: 1 , 2 , 3 , . . . , n , but they are not aligned by their height. The captain asks some soldiers to get out of the line, as the soldiers that remain in the line, without changing their
places, but getting closer, to form a new line, where each soldier can see by looking lengthwise the line at least one of the line's extremity (left or right). A soldier see an extremity if there isn't any soldiers with a higher or equal height than his height
between him and that extremity. 



Write a program that, knowing the height of each soldier, determines the minimum number of soldiers which have to get out of line. 

Input

On the first line of the input is written the number of the soldiers n. On the second line is written a series of n floating numbers with at most 5 digits precision and separated by a space character. The k-th number from
this line represents the height of the soldier who has the code k (1 <= k <= n). 



There are some restrictions: 

• 2 <= n <= 1000 

• the height are floating numbers from the interval [0.5, 2.5] 

Output

The only line of output will contain the number of the soldiers who have to get out of the line.

Sample Input

8
1.86 1.86 1.30621 2 1.4 1 1.97 2.2

Sample Output

4

Source

Romania OI 2002

题目要求:给出n个人排成一排。踢出一些人。让每一个人都能看到最左端,或最后端,最小的踢出人数是?

计算出正序和倒序的最长上升子序列,然后统计:有两种可能。一种是当中一个人是中间。那个人的身高最高。还有事两个人的身高同样。这两个人位置在中间,统计出最长的可能出现的队伍长度,计算出最小的踢出人数

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int dp1[1200] , dp2[1200] ;
double h[1200] ;
int main()
{
int i , j , n , min1 ;
while(scanf("%d", &n)!=EOF)
{
min1 = 1200 ;
h[0] = 0 ; h[n+1] = 0 ;
for(i = 1 ; i <= n ; i++)
scanf("%lf", &h[i]);
memset(dp1,0,sizeof(dp1));
for(i = 1 ; i <= n ; i++)
{
for(j = 0 ; j < i ; j++)
if( h[j] < h[i] && dp1[j]+1 > dp1[i] )
dp1[i] = dp1[j]+1 ;
}
memset(dp2,0,sizeof(dp2));
for(i = n ; i >= 1 ; i--)
{
for(j = n+1 ; j > i ; j--)
if( h[j] < h[i] && dp2[j]+1 > dp2[i] )
dp2[i] = dp2[j]+1 ;
}
for(i = 1 ; i <= n ; i++)
{
for(j = i ; j <= n ; j++)
{
if(i == j)
min1 = min(min1,n-(dp1[i]+dp2[j]-1) );
else
min1 = min(min1, n-( dp1[i]+dp2[j] ) );
}
}
printf("%d\n", min1);
}
}

poj1836--Alignment(dp,最长上升子序列变形)的更多相关文章

  1. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  2. poj1159--Palindrome(dp:最长公共子序列变形 + 滚动数组)

    Palindrome Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 53414   Accepted: 18449 Desc ...

  3. uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)

    题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...

  4. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  5. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  6. ACM: 强化训练-Beautiful People-最长递增子序列变形-DP

    199. Beautiful People time limit per test: 0.25 sec. memory limit per test: 65536 KB input: standard ...

  7. hdu 1080 dp(最长公共子序列变形)

    题意: 输入俩个字符串,怎样变换使其所有字符对和最大.(字符只有'A','C','G','T','-') 其中每对字符对应的值如下: 怎样配使和最大呢. 比如: A G T G A T G -  G ...

  8. hdu1503 最长公共子序列变形

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1503 题意:给出两个字符串 要求输出包含两个字符串的所有字母的最短序列.注意输出的顺序不能 ...

  9. HOJ Recoup Traveling Expenses(最长递减子序列变形)

    A person wants to travel around some places. The welfare in his company can cover some of the airfar ...

随机推荐

  1. 符号文件(.pdb)——Windows 应用程序调试必备

    最近在做项目需求过程中,时不时会遇到崩溃,总是异常中断,于是学习了windbg进行调试的一些基础,windbg在接下来文章进行更新,先介绍在windbg调试中一个重要文件(符号文件) 一.符号文件定义 ...

  2. Android Gradle Plugin指南(六)——高级构建定制

    原文地址:http://tools.android.com/tech-docs/new-build-system/user-guide#TOC-Advanced-Build-Customization ...

  3. Android漫游记(4)---.so文件动态调试一例

    Android平台的动态调试一直以来是个困扰我等Coder的头疼问题,特别是对于本地的动态调试支持.能够说是"弱智"级别的,不知道Google的新版NDK和新出的Android S ...

  4. js显示时间

    function nowTime(){ var data= new Date(); var y=data.getFullYear(); var m=parseInt(data.getMonth())+ ...

  5. baas & API 网关

    最近一段时间一直在做API 网关的工作.清晰看到当前云下Baas将会是主要方向,而API网关会是一把利剑. 本人正在规划API网关,有兴趣的可以一起探讨:hotwheels_bo@163.com

  6. perl uri_escape(urlencode ) 转换

    [root@wx03 lib]# cat a1.pl #引入模块 use URI::Escape; #urlencode $encoded = uri_escape("[中均]") ...

  7. mysql-5.6.13在windows平台下的安装、使用(图解)

    本文同步至:http://www.waylau.com/mysql-5-6-13-windows-platform-installation-use-graphic/ 一. 首先电脑要具备.Net F ...

  8. psl/sql本地与远程连接配置

    一:下载Oracleclient 下载地址:http://www.oracle.com/technetwork/database/features/instant-client/index-09748 ...

  9. 奇葩的UI引用LayoutInflater.from问题

    今收到BUG一枚,一个页面的EditText的风格变为了系统默认(系统经过定制,风格和普通的不同) 经检查xml无任何不妥,最终问题出在LayoutInflater.from上. 如果LayoutIn ...

  10. DWZ (JUI) 教程(二):处理信息回馈的通用规范

    在开发过程中,抽象成模型,定义规范是非常有必要的,不仅可以简化代码,提高开发效率,也为自己减少了不少麻烦. 在开发中,因为DWZ这块是我负责,由于代码琐碎,重复度高,没有抽象封装,没有定义规范,别人不 ...