早晨碰到了一题挺裸的最短路问题需要打印路径:vijos1635

1.首先说说spfa的方法:

其实自己之前打的最多的spfa是在网格上的那种,也就是二维的

一维的需要邻接表+queue

以及对于queue的操作,自己也是醉了

这里贴一个模板(不含打印路径):

#include<cstdio>
#include<cstring>
#include<queue>
#include<iostream>
using namespace std;
const int maxn=10100;
int n,m,k,t,x,y,s,ans=0;
long long tot=0;
struct edge{
int from,to,w,next;
}e[10100000];
int head[maxn],dist[maxn];
bool vis[maxn];
void add(int x,int y,int z){//邻接表
e[tot].from=x;
e[tot].to=y;
e[tot].w=z;
e[tot].next=head[x];
head[x]=tot++;
}
void spfa(int s){
queue<int>q;
memset(dist,63,sizeof(dist));
memset(vis,false,sizeof(vis));//感觉这里的赋值和二维的略有区别,这里是初始值false
q.push(s);
dist[s]=0;
while(!q.empty()){
int u=q.front();
q.pop();
vis[u]=false;②
for(int i=head[u];i!=-1;i=e[i].next){
int v=e[i].to;
if(dist[v]>dist[u]+e[i].w){
dist[v]=dist[u]+e[i].w;
if(!vis[v]){ //如果已经入队,或是初始值①
vis[v]=true;
q.push(v);
}
}
}
}
}
int main(){
scanf("%d",&n);
memset(head,-1,sizeof(head));//记得head赋值为-1
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++){
scanf("%d",&s);
if(s!=0){
add(i,j,s);
}
}
spfa(1);
printf("%d",dist[n]);
return 0;
}

好好感受一下①和②

对于spfa打印路径问题:

这里就需要用上指针的思想,去找n的前驱

所以如果dist有更新值,那么就记录下,但是这里要理解,

你记录的并不是根据这条路的路径顺序记的

说白了就是,f[1]并不是第一条路径

而是让v->u,这才是f应该做的

   if(dist[v]>dist[u]+e[i].w){
dist[v]=dist[u]+e[i].w;
f[v]=u;//在更新值的后面加上这个
if(!vis[v]){
vis[v]=true;
q.push(v);
}
}

以及调用一个递归函数寻找前驱:

void printpath(int k){
if(k!=0){
printpath(f[k]);
printf("%d ",k);
}
}

2.FLOYD算法:

初始化 f[i][j]=j;

之后也是在更新值后面加上一条语句:

k=1-n

i=1-n

j=1-n

if(..>..)

dist[i][j]=dist[i][k]+dist[k][j];

f[i][j]=f[i][k];

比如要打印v,w的路径:
k=P[v][w]; /* 获得第一个路径顶点下标 */
printf(" path: %d",v); /* 打印源点 */
while(k!=w) /* 如果路径顶点下标不是终点 */
{
printf(" -> %d",k); /* 打印路径顶点 */
k=P[k][w]; /* 获得下一个路径顶点下标 */
}
printf(" -> %d\n",w); /* 打印终点 */

  

SPFA和FLOYD算法如何打印路径的更多相关文章

  1. Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较

    参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径 ...

  2. Floyd算法——保存路径——输出路径 HDU1385

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1385 参考 http://blog.csdn.net/shuangde800/article/deta ...

  3. Floyd算法并输出路径

    hdu1224 Free DIY Tour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Ot ...

  4. [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径

    相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...

  5. 算法学习记录-图——最小路径之Floyd算法

    floyd算法: 解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包. 设为从到的只以集合中的节点为中间节点的最短路径的长度. 若最短路径经过 ...

  6. HDOJ 2544 最短路(最短路径 dijkstra算法,SPFA邻接表实现,floyd算法)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  7. 最小路径算法(Dijkstra算法和Floyd算法)

    1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径. 我们用一个例子来具体说明迪杰斯特拉算法的流程. 定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径 ...

  8. 最短路-SPFA算法&Floyd算法

    SPFA算法 算法复杂度 SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环. SPFA一般情况复杂度是O(m)最坏情况下复杂度和朴素 ...

  9. L2-001. 紧急救援 (Dijkstra算法打印路径)

    作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图.在地图上显示有多个分散的城市和一些连接城市的快速道路.每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上.当其他城市有紧急求 ...

随机推荐

  1. Codeforces 135A-Replacement(思维)

    A. Replacement time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. 浅谈 js 正则字面量 与 new RegExp 执行效率

    原文:浅谈 js 正则字面量 与 new RegExp 执行效率 前几天谈了正则匹配 js 字符串的问题:<js 正则学习小记之匹配字符串> 和 <js 正则学习小记之匹配字符串优化 ...

  3. 写手Remoting测试工具

    基于.NET开发分布式系统.经经常使用到Remoting技术.在測试驱动开发流行的今天.假设针对分布式系统中的每一个Remoting接口的每一个方法都要写具体的測试脚本,无疑很浪费时间.所以,我想写一 ...

  4. poj 3254 Corn Fields 国家压缩dp

    意甲冠军: 要在m行n陆行,有一些格您可以种树,别人做不到的.不相邻的树,我问了一些不同的共同拥有的法律. 分析: 从后往前种,子问题向父问题扩展,当种到某一格时仅仅有他和他后面的n-1个格子的情况对 ...

  5. linux_曝出重大bash安全漏洞及修复方法

    日前Linux官方内置Bash中新发现一个非常严重安全漏洞(漏洞参考https://access.redhat.com/security/cve/CVE-2014-6271  ),黑客可以利用该Bas ...

  6. js 里面 写 C# 代码 遇到的问题

    js  代码块 必须放置在 body 里面

  7. MongoDB学习笔记&lt;两&gt;

    继续有shell学问,他们继续研究的例子,下面的知识: --文档数据插入 --文档数据删除 --文档数据更新 如下面的详细信息: 1.插入文档 db.person.insert({"name ...

  8. IOS开发-Swift新语言初见

    Safe Swift pairs increased type safety with type inference, restricts direct access to pointers, and ...

  9. 继续推荐几款VisualStudio的插件

    原文:继续推荐几款VisualStudio的插件 继前几天推荐了一款转换vs插件的插件后,借着安装VS2013之际,把我比较喜欢的几个插件继续推荐一下. C# Outline 2013 2013 C# ...

  10. windows系统下c语言暂停程序

    原文:windows系统下c语言暂停程序 windows系统下,很多C语言初学者的调试时,往往没看到结果程序就退出了,据我所知的方法主要有以下几种 方法一: #include int main() { ...