运动检测(前景检测)之(一)ViBe
运动检测(前景检测)之(一)ViBe
因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路。个人了解的大概概括为以下一些:
帧差、背景减除(GMM、CodeBook、 SOBS、 SACON、 VIBE、 W4、多帧平均……)、光流(稀疏光流、稠密光流)、运动竞争(Motion Competition)、运动模版(运动历史图像)、时间熵……等等。如果加上他们的改进版,那就是很大的一个家族了。
对于上一些方法的一点简单的对比分析可以参考下:
http://www.cnblogs.com/ronny/archive/2012/04/12/2444053.html
至于哪个最好,看使用环境吧,各有千秋,有一些适用的情况更多,有一些在某些情况下表现更好。这些都需要针对自己的使用情况作测试确定的。呵呵。
推荐一个牛逼的库:http://code.google.com/p/bgslibrary/里面包含了各种背景减除的方法,可以让自己少做很多力气活。
还有王先荣博客上存在不少的分析:
http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html
下面的博客上转载王先荣的上面几篇,然后加上自己分析了两篇:
本文主要关注其中的一种背景减除方法:ViBe。stellar0的博客上对ViBe进行了分析,我这里就不再啰嗦了,具体的理论可以参考:
http://www2.ulg.ac.be/telecom/research/vibe/
http://blog.csdn.net/stellar0/article/details/8777283
http://blog.csdn.net/yongshengsilingsa/article/details/6659859
http://www2.ulg.ac.be/telecom/research/vibe/download.html
http://www.cvchina.info/2011/12/25/vibe/
《ViBe: A universal background subtraction algorithm for video sequences》
《ViBe: a powerful technique for background detection and subtraction in video sequences》
ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少,很简单。我之前根据stellar0的代码(在这里,非常感谢stellar0)改写成一个Mat格式的代码了,现在摆上来和大家交流,具体如下:(在VS2010+OpenCV2.4.2中测试通过)
ViBe.h
#pragma once
#include <iostream>
#include "opencv2/opencv.hpp" using namespace cv;
using namespace std; #define NUM_SAMPLES 20 //每个像素点的样本个数
#define MIN_MATCHES 2 //#min指数
#define RADIUS 20 //Sqthere半径
#define SUBSAMPLE_FACTOR 16 //子采样概率 class ViBe_BGS
{
public:
ViBe_BGS(void);
~ViBe_BGS(void); void init(const Mat _image); //初始化
void processFirstFrame(const Mat _image);
void testAndUpdate(const Mat _image); //更新
Mat getMask(void){return m_mask;}; private:
Mat m_samples[NUM_SAMPLES];
Mat m_foregroundMatchCount;
Mat m_mask;
};
ViBe.cpp
#include <opencv2/opencv.hpp>
#include <iostream>
#include "ViBe.h" using namespace std;
using namespace cv; int c_xoff[9] = {-1, 0, 1, -1, 1, -1, 0, 1, 0}; //x的邻居点
int c_yoff[9] = {-1, 0, 1, -1, 1, -1, 0, 1, 0}; //y的邻居点 ViBe_BGS::ViBe_BGS(void)
{ }
ViBe_BGS::~ViBe_BGS(void)
{ } /**************** Assign space and init ***************************/
void ViBe_BGS::init(const Mat _image)
{
for(int i = 0; i < NUM_SAMPLES; i++)
{
m_samples[i] = Mat::zeros(_image.size(), CV_8UC1);
}
m_mask = Mat::zeros(_image.size(),CV_8UC1);
m_foregroundMatchCount = Mat::zeros(_image.size(),CV_8UC1);
} /**************** Init model from first frame ********************/
void ViBe_BGS::processFirstFrame(const Mat _image)
{
RNG rng;
int row, col; for(int i = 0; i < _image.rows; i++)
{
for(int j = 0; j < _image.cols; j++)
{
for(int k = 0 ; k < NUM_SAMPLES; k++)
{
// Random pick up NUM_SAMPLES pixel in neighbourhood to construct the model
int random = rng.uniform(0, 9); row = i + c_yoff[random];
if (row < 0)
row = 0;
if (row >= _image.rows)
row = _image.rows - 1; col = j + c_xoff[random];
if (col < 0)
col = 0;
if (col >= _image.cols)
col = _image.cols - 1; m_samples[k].at<uchar>(i, j) = _image.at<uchar>(row, col);
}
}
}
} /**************** Test a new frame and update model ********************/
void ViBe_BGS::testAndUpdate(const Mat _image)
{
RNG rng; for(int i = 0; i < _image.rows; i++)
{
for(int j = 0; j < _image.cols; j++)
{
int matches(0), count(0);
float dist; while(matches < MIN_MATCHES && count < NUM_SAMPLES)
{
dist = abs(m_samples[count].at<uchar>(i, j) - _image.at<uchar>(i, j));
if (dist < RADIUS)
matches++;
count++;
} if (matches >= MIN_MATCHES)
{
// It is a background pixel
m_foregroundMatchCount.at<uchar>(i, j) = 0; // Set background pixel to 0
m_mask.at<uchar>(i, j) = 0; // 如果一个像素是背景点,那么它有 1 / defaultSubsamplingFactor 的概率去更新自己的模型样本值
int random = rng.uniform(0, SUBSAMPLE_FACTOR);
if (random == 0)
{
random = rng.uniform(0, NUM_SAMPLES);
m_samples[random].at<uchar>(i, j) - _image.at<uchar>(i, j);
} // 同时也有 1 / defaultSubsamplingFactor 的概率去更新它的邻居点的模型样本值
random = rng.uniform(0, SUBSAMPLE_FACTOR);
if (random == 0)
{
int row, col;
random = rng.uniform(0, 9);
row = i + c_yoff[random];
if (row < 0)
row = 0;
if (row >= _image.rows)
row = _image.rows - 1; random = rng.uniform(0, 9);
col = j + c_xoff[random];
if (col < 0)
col = 0;
if (col >= _image.cols)
col = _image.cols - 1; random = rng.uniform(0, NUM_SAMPLES);
m_samples[random].at<uchar>(row, col) = _image.at<uchar>(i, j);
}
}
else
{
// It is a foreground pixel
m_foregroundMatchCount.at<uchar>(i, j)++; // Set background pixel to 255
m_mask.at<uchar>(i, j) = 255; //如果某个像素点连续N次被检测为前景,则认为一块静止区域被误判为运动,将其更新为背景点
if (m_foregroundMatchCount.at<uchar>(i, j) > 50)
{
int random = rng.uniform(0, NUM_SAMPLES);
if (random == 0)
{
random = rng.uniform(0, NUM_SAMPLES);
m_samples[random].at<uchar>(i, j) = _image.at<uchar>(i, j);
}
}
}
}
}
}
Main.cpp
// This is based on
// "VIBE: A POWERFUL RANDOM TECHNIQUE TO ESTIMATE THE BACKGROUND IN VIDEO SEQUENCES"
// by Olivier Barnich and Marc Van Droogenbroeck
// Author : zouxy
// Date : 2013-4-13
// HomePage : http://blog.csdn.net/zouxy09
// Email : zouxy09@qq.com #include "opencv2/opencv.hpp"
#include "ViBe.h"
#include <iostream>
#include <cstdio> using namespace cv;
using namespace std; int main(int argc, char* argv[])
{
Mat frame, gray, mask;
VideoCapture capture;
capture.open("video.avi"); if (!capture.isOpened())
{
cout<<"No camera or video input!\n"<<endl;
return -1;
} ViBe_BGS Vibe_Bgs;
int count = 0; while (1)
{
count++;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, gray, CV_RGB2GRAY); if (count == 1)
{
Vibe_Bgs.init(gray);
Vibe_Bgs.processFirstFrame(gray);
cout<<" Training GMM complete!"<<endl;
}
else
{
Vibe_Bgs.testAndUpdate(gray);
mask = Vibe_Bgs.getMask();
morphologyEx(mask, mask, MORPH_OPEN, Mat());
imshow("mask", mask);
} imshow("input", frame); if ( cvWaitKey(10) == 'q' )
break;
} return 0;
}
运动检测(前景检测)之(一)ViBe的更多相关文章
- 运动检测(前景检测)之(二)混合高斯模型GMM
运动检测(前景检测)之(二)混合高斯模型GMM zouxy09@qq.com http://blog.csdn.net/zouxy09 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新 ...
- [转]前景检测算法--ViBe算法
原文:http://blog.csdn.net/zouxy09/article/details/9622285 转自:http://blog.csdn.net/app_12062011/article ...
- [转]运动检测(前景检测)之(二)混合高斯模型GMM
转自:http://blog.csdn.net/zouxy09/article/details/9622401 因为监控发展的需求,目前前景检测的研究还是很多的,也出现了很多新的方法和思路.个人了解的 ...
- ViBe(Visual Background extractor)背景建模或前景检测
ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网: ...
- 目标检测之vibe---ViBe(Visual Background extractor)背景建模或前景检测
ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网: ...
- [综]前景检测GMM
tornadomeet 前景检测算法_4(opencv自带GMM) http://www.cnblogs.com/tornadomeet/archive/2012/06/02/2531705.html ...
- paper 83:前景检测算法_1(codebook和平均背景法)
前景分割中一个非常重要的研究方向就是背景减图法,因为背景减图的方法简单,原理容易被想到,且在智能视频监控领域中,摄像机很多情况下是固定的,且背景也是基本不变或者是缓慢变换的,在这种场合背景减图法的应用 ...
- VIBE(前景检测)
1.VIBE思想: 为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点. 2.VIBE模型初始化 通用的 ...
- 运动目标前景检测之ViBe源代码分析
一方面为了学习,一方面按照老师和项目的要求接触到了前景提取的相关知识,具体的方法有很多,帧差.背景减除(GMM.CodeBook. SOBS. SACON. VIBE. W4.多帧平均……).光流(稀 ...
随机推荐
- GPS坐标互转:WGS-84(GPS)、GCJ-02(Google地图)、BD-09(百度地图)[转]
WGS-84:是国际标准,GPS坐标(Google Earth使用.或者GPS模块)GCJ-02:中国坐标偏移标准,Google Map.高德.腾讯使用BD-09:百度坐标偏移标准,Baidu Map ...
- Jquery Jqprint—随着Jquery Jqprint实现网页打印
研究关于利用空闲时间今天Jquery Jqprint插入,用这个Jquery脚本就可以实现轻松打印指定的页面内容功能区: 样品A: <!DOCTYPE html PUBLIC "-// ...
- oracle_安装_win7+64位+Oracle+11g+64位下使用PLSQL+Developer+的解决办法
1)安装Oracle 11g 64位 2)安装32位的Oracle客户端( instantclient-basic-win32-11.2.0.1.0) 下载instantclient-basic-wi ...
- oracle_彻底删除oracle
例如ORACLE安装路径为:C:\ORACLE 实现方法: 1. 开始->设置->控制面板->管理工具->服务 停止所有Oracle服务. 2. 开始->程序->O ...
- android 应用程序框架
携带Android软件开发时间,由开发商开发Android应用程序是通过应用程序框架和Android底层交互,因此,发展以达到最大的部分是应用程序框架. 应用集成框架 那里4一个重要组成部分,以下. ...
- Python学习笔记16:标准库多线程(threading包裹)
Python主要是通过标准库threading包来实现多线程. 今天,互联网时代,所有的server您将收到大量请求. server要利用多线程的方式的优势来处理这些请求,为了改善网络port读写效率 ...
- MVC验证03-自定义验证规则、禁止输入某些值
原文:MVC验证03-自定义验证规则.禁止输入某些值 本文继续体验自定义验证规则,需求是禁止输入某些值.本文与前2篇相关,请参考:MVC验证01-基础.远程验证 MVC验证02-自定义验证规则.邮 ...
- centos下mysql 最新版最终成功安装!备份一下几个关键地方
我本来仅仅是为了搭建简单的LAMP环境,亲自己主动手,却发现有这么多的问题会发生.(by default7#zbphp.com) 非常多地方给的安装Mysql的提示是通过yum一键安装.shell命令 ...
- java设计模式之一工厂模式
简单工厂模式是java设计模式中最简单的设计模式之一: 工厂模式是最常用的设计模式之一. 工厂模式就相当于创建实例对象的new,我们经常要根据类Class生成实例对象,如A a=new A() 工厂模 ...
- Linq to Sql : 三种事务处理方式
原文:Linq to Sql : 三种事务处理方式 Linq to SQL支持三种事务处理模型:显式本地事务.显式可分发事务.隐式事务.(from MSDN: 事务 (LINQ to SQL)).M ...