E. Devu and Flowers
time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contains fi flowers. All flowers in a single box are of the same color (hence they are indistinguishable). Also, no two boxes have flowers of the same color.

Now Devu wants to select exactly s flowers from the boxes to decorate his garden. Devu would like to know, in how many different ways can he select the flowers from each box? Since this number may be very large, he asks you to find the number modulo (109 + 7).

Devu considers two ways different if there is at least one box from which different number of flowers are selected in these two ways.

Input

The first line of input contains two space-separated integers n and s (1 ≤ n ≤ 20, 0 ≤ s ≤ 1014).

The second line contains n space-separated integers f1, f2, ... fn (0 ≤ fi ≤ 1012).

Output

Output a single integer — the number of ways in which Devu can select the flowers modulo (109 + 7).

Examples
Input
2 3
1 3
Output
2
Input
2 4
2 2
Output
1
Input
3 5
1 3 2
Output
3
Note

Sample 1. There are two ways of selecting 3 flowers: {1, 2} and {0, 3}.

Sample 2. There is only one way of selecting 4 flowers: {2, 2}.

Sample 3. There are three ways of selecting 5 flowers: {1, 2, 2}, {0, 3, 2}, and {1, 3, 1}.

这个题是就是容斥原理的东西, 因为观察到N的范围就是20,S的范围就是就是很大的,所以要是在f[i]没有时间限制的情况的时候

然后就是根据常用的隔板法的原理,然后就是可以得到 x1+x2+x3+x4-----xn =s;

然后的话因为x1---xn的取值有可能是0,那么的话我得到的结果就和隔板法的结果不一样了,那这样的哈我就把所有的值都加1,然后就可以了。

还有的话我们就会用到容斥原理,然后就是假设

|!A1n!A2.....n!An| = N-|A1UA2UA3....UAn| ====》 我们假设!A== 1<=x<=f[i]+1;  那么A的话就是  f[i]+1<x<=sum;

这样子的话区间的长度就是 sum-f[i]-1  就是从1---sum-f[i]-1;

然后的话应该就可以了,,,,,

E. Devu and Flowers的更多相关文章

  1. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  2. Codeforces 451E Devu and Flowers(容斥原理)

    题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...

  3. Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥

    E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...

  4. CF451E Devu and Flowers 解题报告

    CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...

  5. CF451E Devu and Flowers(容斥)

    CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...

  6. BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers

    Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...

  7. Codeforces 451 E Devu and Flowers

    Discription Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th ...

  8. CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...

  9. Devu and Flowers lucas定理+容斥原理

    Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...

随机推荐

  1. .htaccess 使用大全

    重新和重定向 注意:首先需要服务器安装和启用mod_rewrite模块. 强制 www RewriteEngine on RewriteCond %{HTTP_HOST} ^example\.com ...

  2. UVA - 129 Krypton Factor (困难的串)(回溯法)

    题意:求由字母表前L个字母组成的字典序第n小的困难串.(如果一个字符串包含两个相邻的重复子串,则称它是"容易的串",其他串称为"困难的串".) 分析:回溯时,检 ...

  3. css 之!important

    主要是自己犯了个错误: 把 !important 放到了分号后面; 正确写法写法: .current{ background-color: #f1f1f1; border-left: 2px soli ...

  4. IOS开发中摇一摇是怎么实现的

    三个方法,分别是开始摇一摇,结束摇一摇,取消摇一摇,我们可以在里面对应的进行事件处理,或者在ui上进行信息展示: 1.开始摇一摇:(在实际app中用需要处理的语句替换NSLog(@"开始摇一 ...

  5. UVa 11308 - Bankrupt Baker

    题目大意:给出一些原料和价钱和若干份菜谱,每份菜谱都标明所需的原料和数量,找出所有不超过预算的菜谱. 没什么好说的,主要是对map的运用. #include <cstdio> #inclu ...

  6. Django performance

    Reference: https://impythonist.wordpress.com/2016/02/21/building-high-performance-django-systems/ Th ...

  7. Djanto static静态文件配置

    django的settings中包含三个static相关设置项: STATIC_ROOT STATIC_URL STATICFILES_DIRS   STATIC_URL 好理解,就是映射到静态文件的 ...

  8. Java中间件:淘宝网系统高性能利器(转)

    淘宝网是亚太最大的网络零售商圈,其知名度毋庸置疑,吸引着越来越多的消费者从街头移步这里,成为其忠实粉丝.如此多的用户和交易量,也意味着海量的信息处理,其背后的IT架构的稳定性.可靠性也显得尤为重要.那 ...

  9. Assembly

    Principles of Computer Organization and Assembly Language Using the JavaTM Virtual Machine http://it ...

  10. 《深度探索C++对象模型》笔记——Function语意学

    member的各种调用方式 C++支持三种类型的member functions:static.nonstatic和virtual. nonstatic member functions会被编译器转换 ...