对Conjugate Gradient 优化的简单理解
对Conjugate Gradient 优化的简单理解)
机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)
数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the Conjugate Gradient Method Without the Agonizing Pain,具体细节大家还需仔细阅读那篇文章,这篇博客并不是重现那篇论文的内容,只是简单的梳理下CG算法的流程,以及它的重要思路,方便大家理解CG算法。
首先我们需要解决的问题是:求满足线性方程(1):的解x.
那么有人就这么认为了:这个解x不就是吗?对,这样说也不能算错,但是如果A不可逆那么x这样就解不出来了。另外当A矩阵的尺度非常大时(比如几百万维),即使其逆存在,这样计算的计算量也太大。而CG算法则可以通过少数的几步迭代来求出其近似解,虽然求出的解是近似的,但是其精度可以达到很高,完全可以满足我们的需求。
下面就来看看CG算法实现时的大概流程:
1. 随机选取一个初始点,记为,并记为此时方程(1)的残差,记第一个搜索方向为,搜索步长为.
2. 现在假设我们已经按照某个迭代公式在第k步求出了,此时的残差,前面k次的搜索方向分别为,很明显这些变量都是已知的,而现在我们需要求的是第k次的搜索方向.在CG理论中,有这么一个假设,即为,的线性组合,记为.
3. 为了求出,就必须求出系数,怎么求呢?CG理论中另外一个性质就是:和这k个向量关于A共轭,即满足共轭方程,其中0<=j<=k-1. 下面就可以利用该性质列出k个方程来求解这些系数了,其结果为:当0<=j<k-1时,系数;当j=k-1时,系数. 因此此时的搜索方向.
4. 既然的值有了,搜索方向也有了,下一步就改确定搜索步长了,求它的思想是使取得极值,即导数为0。一旦求出了,则下一个迭代点也就求出了。表达式对求导为0后可求得.
5. 循环步骤2,3,4,直到满足收敛条件。
上面只是CG算法的基本版本,而常见的CG算法版本是针对上面的计算公式和作了进一步推导,利用Krylov 子空间的一些性质,最后简化为:和,同时对残差也是经过迭代得到(此处省略)。 由简化前后(此处省略N公式)对比可知,将原先表达式中一些矩阵和向量的乘积运算量减小了,因为很大一部分矩阵乘向量都转换成了向量乘向量。
最后附上论文中关于CG算法的流程图,大家可以参考上面5个步骤来理解CG的主要思路,本博客中的符号可能和论文中的不一定相同,且公式也不一定是正确的,博文只是让大家知道这些公式是由什么理论推出的,有个宏观认识,一切需以论文中的内容为主。
参考资料:
Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain, Carnegie Mellon University, Pittsburgh, PA.
对Conjugate Gradient 优化的简单理解的更多相关文章
- 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)
数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the C ...
- input屏蔽历史记录 ;function($,undefined) 前面的分号是什么用处 JSON 和 JSONP 两兄弟 document.body.scrollTop与document.documentElement.scrollTop兼容 URL中的# 网站性能优化 前端必知的ajax 简单理解同步与异步 那些年,我们被耍过的bug——has
input屏蔽历史记录 设置input的扩展属性autocomplete 为off即可 ;function($,undefined) 前面的分号是什么用处 ;(function($){$.ex ...
- Deep learning:四十二(Denoise Autoencoder简单理解)
前言: 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Be ...
- 最优化方法:共轭梯度法(Conjugate Gradient)
http://blog.csdn.net/pipisorry/article/details/39891197 共轭梯度法(Conjugate Gradient) 共轭梯度法(英语:Conjugate ...
- 【原创】分布式之数据库和缓存双写一致性方案解析(三) 前端面试送命题(二)-callback,promise,generator,async-await JS的进阶技巧 前端面试送命题(一)-JS三座大山 Nodejs的运行原理-科普篇 优化设计提高sql类数据库的性能 简单理解token机制
[原创]分布式之数据库和缓存双写一致性方案解析(三) 正文 博主本来觉得,<分布式之数据库和缓存双写一致性方案解析>,一文已经十分清晰.然而这一两天,有人在微信上私聊我,觉得应该要采用 ...
- git的简单理解及基础操作命令
前端小白一枚,最近开始使用git,于是花了2天看了廖雪峰的git教程(偏实践,对于学习git的基础操作很有帮助哦),也在看<git版本控制管理>这本书(偏理论,内容完善,很不错),针对所学 ...
- 简单理解Struts2中拦截器与过滤器的区别及执行顺序
简单理解Struts2中拦截器与过滤器的区别及执行顺序 当接收到一个httprequest , a) 当外部的httpservletrequest到来时 b) 初始到了servlet容器 传递给一个标 ...
- [转]简单理解Socket
简单理解Socket 转自 http://www.cnblogs.com/dolphinX/p/3460545.html 题外话 前几天和朋友聊天,朋友问我怎么最近不写博客了,一个是因为最近在忙着公 ...
- Js 职责链模式 简单理解
js 职责链模式 的简单理解.大叔的代码太高深了,不好理解. function Handler(s) { this.successor = s || null; this.handle = funct ...
随机推荐
- 【Espruino】NO.15 nRF24L01+无线收发器
http://blog.csdn.net/qwert1213131/article/details/35853747 本文属于个人理解,能力有限,纰漏在所难免,还望指正! [小鱼有点电] [Espru ...
- android 卸载程序、清除数据、停止服务用法
要实现卸载程序.清除数据.停止正在执行的服务这几大模块,如今将代码粗略总结例如以下: 主要运用到的类有 PackageManager ActivityManager ApplicationInfo R ...
- Redhat Enterprise server 6.3 构造VPN
一.软体 dkms.kernel_ppp_mppe.pptpd 二.下载软件 wget http://sourceforge.net/projects/poptop/files/mppe%20modu ...
- Linux MySQL自己环境搭建的笔记
cd /usr/share/selinuxsetenforce 0tar -xvf MySQL-5.6.12-1.el6.x86_64.rpm-bundle.tarrpm -qa|grep -i my ...
- 移动小bug
1. 在三星note2,小米2,页面加载后,页面有黑块. 那么提高被盖住的部分z-index. 2. iphone5 ,ios7.0.4,上文字显示不出 那么就先hide,setTimeout几百毫秒 ...
- IT见解
IT见解 北京海淀区 2014-10-18 张俊浩 *域名的市值在走低,因其功能被新浪.腾讯微博.微信大V这种账号所代替 *小米将自己定位为互联网公司,而不是手机公司 *手机不远的未来会成为公共 ...
- JS模块与命名空间的介绍
起因将代码组织到类中的一个重要原因是让代码更加“模块化”,可以在很多不同的场景中实现代码的重用.但类不是唯一的模块化代码的方式. 一般来讲,模块是一个独立的JS文件.模块文件可以包含一个类定义.一组相 ...
- Installshield停止操作系统进程的代码--IS5版本适用
原文:Installshield停止操作系统进程的代码--IS5版本适用 出处:http://www.installsite.org/pages/en/isp_ext.htm这个地址上有不少好东西,有 ...
- MonkeyDevcie API 实践全记录
1. 背景 使用SDK自带的NotePad应用作为实践目标应用,目的是对MonkeyDevice拥有的成员方法做一个初步的了解. 以下是官方列出的方法的Overview. Return Type ...
- YII相关资料(干货)
Sites 网站 yiifeed:Yii 最新动态都在这里 yiigist:Yii 专用的 Packages my-yii:Yii 学习资料和新闻 Docs 文档 Yii Framework 2.0 ...