正题

题目链接:https://www.luogu.com.cn/problem/AT4502


题目大意

给出\(n\)个长度\(S\),求一个最小\(m\)表示用大小为\(m\)的字符集构造出\(n\)个符合对应长度的字符串使得字符串按照给出顺序从小到大。

\(1\leq n\leq 2\times 10^5,1\leq S_i\leq 10^9\)


解题思路

先二分答案,然后每次构造最小的能构造的就行了。考虑怎么构造最小的。

如果这个字符串比上一个要长,那么显然在上一个后面补上最小的字符就是最优的。

否则我们把上一个字符串截断到目前长度,然后类似于进位的方法来让最后一个位置加上\(1\)。

因为字符串长度很长所以比较难办,开始写了个线段树发现过不了。

其实用栈维护每一个不是最小字符的位置就好了,这些位置不会很多的,进位就暴力递归进位。

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=2e5+10;
int n,a[N],s[N],k[N],top;
void ins(int x,int w){
while(s[top]>x)top--;
if(s[top]!=x)
s[++top]=x,k[top]=1;
else k[top]++;
if(top>1&&k[top]>=w)
top--,ins(x-1,w);
}
bool check(int w){
top=1;k[1]=s[1]=0;
for(int i=2;i<=n;i++)
if(a[i]<=a[i-1]){
if(w==1)return 0;
ins(a[i],w);
}
return !k[1];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int l=1,r=n;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid))r=mid-1;
else l=mid+1;
}
printf("%d\n",l);
return 0;
}

AT4502-[AGC029C]Lexicographic constraints【二分,栈】的更多相关文章

  1. [Atcoder AGC029C]Lexicographic constraints

    题目大意:给定$n$个字符串的长度$a_i$,问至少用几种字符可以构造出字符串$s_1\sim s_n$,满足$|s_i|=a_i$且$s_1<s_2<\cdots<s_n$. $ ...

  2. AGC029C - Lexicographic constraints

    记录我心路历程吧,这道小水题暴露出我很多问题. 给定 \(n\) 个字符串长度 \(a_i\) ,求字符集最小多大,才能构造出按字典序比较 \(s_1 < s_2 < \dots < ...

  3. 「AGC029C」Lexicographic constraints

    「AGC029C」Lexicographic constraints 传送门 好像这个题非常 easy. 首先这个答案显然具有可二分性,所以问题转化为如何判定给定的 \(k\) 是否可行. 如果 \( ...

  4. [Agc029C]Lexicographic constraints_进制_二分答案_贪心

    Lexicographic constraints 题目链接:https://atcoder.jp/contests/agc029/tasks/agc029_c 数据范围:略. 题解: 二分是显然的, ...

  5. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

  6. 【AtCoder】AGC029(A-E)

    A - Irreversible operation 题解 把每个B后面的W个数累加起来即可 代码 #include <bits/stdc++.h> #define fi first #d ...

  7. NOIP总结

    拿到题目先写裸的暴力,暴力一定要写对,没想出正解有暴力垫底,想出了正解也可以拿来拍 过了样例之后一定要造数据测,数据越坑越好 一定要造极限数据,哪怕造不知道答案的数据都行,主要是检测RE和TLE,正确 ...

  8. [ CodeVS冲杯之路 ] P3955

    不充钱,你怎么AC? 题目:http://codevs.cn/problem/3955/ 最长上升子序列的加强版,n 有1000000,n 方的 DP 肯定会 TLE,那么用二分栈维护 二分栈我讲不好 ...

  9. bzoj 2726: [SDOI2012]任务安排

    Description 机 器上有N个需要处理的任务,它们构成了一个序列.这些任务被标号为1到N,因此序列的排列为1,2,3...N.这N个任务被分成若干批,每批包含相邻的 若干任务.从时刻0开始,这 ...

随机推荐

  1. 【spring 注解驱动开发】Spring AOP原理

    尚学堂spring 注解驱动开发学习笔记之 - AOP原理 AOP原理: 1.AOP原理-AOP功能实现 2.AOP原理-@EnableAspectJAutoProxy 3.AOP原理-Annotat ...

  2. p命名空间和c命名空间

    4 p命名空间和c命名空间在通过构造方法或set方法给bean注入关联项时通常是通过constructor-arg元素和property元素来定义的.在有了p命名空间和c命名空间时我们可以简单的把它们 ...

  3. webapp网络定位

    1 <script> 2 var x=document.getElementById("demo"); 3 function getLocation() 4 { 5 i ...

  4. [ASP.NET MVC]@RenderSection,@RenderBody(),@RenderPage

    1.@RenderBody()  作用和母版页中的服务器控件类似,当创建基于此布局页面的视图时,视图的内容会和布局页面合并,而新创建视图的内容会通过布局页面的@RenderBody()方法呈现在标签之 ...

  5. Spring第一课:依赖注入DI(二)

    DI Dependency Injection ,依赖注入 is a :是一个,继承. has a:有一个,成员变量,依赖. class B { private A a;   //B类依赖A类 } 依 ...

  6. (int)a、&a、(int)&a、(int&)a的区别,很偏僻的题

    (int)a.&a.(int)&a.(int&)a的区别,很偏僻的题 #include <iostream> #include <stdio.h> #i ...

  7. Visual Studio 2022 预览版3 最新功能解说

    我们很高兴地宣布Visual Studio 2022 的第三个预览版问世啦!预览版3 提供了更多关于个人和团队生产力.现代开发和持续创新等主题的新功能.在本文中,我们将重点介绍Visual Studi ...

  8. rabbitMq内存与磁盘分配问题

    在服务器上也可以改变配置文件修改内存 也可以使用命令进行分配: 相对内存:rabbitmqctl  set_vm_memory_hgih_waterwmark 0.4     使用时可以把这个0.4替 ...

  9. Seq2Seq sequence-to-sequence模型 简介

    Sequence-to-sequence (seq2seq) 模型. 突破了传统的固定大小输入问题框架 开创了将DNN运用于翻译.聊天(问答)这类序列型任务的先河 并且在各主流语言之间的相互翻译,和语 ...

  10. 实例_ Java中的代理模式

    静态代理 我们定义一个接口,并且使用代理模式,想要做到的就是在调用这个接口的实现类时在此方法上添加功能. public interface HelloInterface { void sayHello ...