P4859-已经没有什么好害怕的了【容斥,dp】
正题
题目链接:https://www.luogu.com.cn/problem/P4859
题目大意
两个长度为\(n\)的序列\(a,b\)两两匹配,求\(a_i>b_i\)的组数比\(a_i<b_i\)的组数多\(k\)的方案数。
保证输入数字两两不同
解题思路
其实就是求恰好有\(\frac{n+k}{2}\)种\(a_i>b_i\)的匹配方案。
先设\(f_{i,j}\)表示到\(a\)的第\(i\)个,已经选择了\(j\)组的方案。转移起来比较麻烦,我们不知道\(b\)中选了哪些。
把\(a\)和\(b\)排序后,设\(l_i\)表示一个最大的数字使得\(a_i>b_{l_i}\),然后就可以\(dp\)了
\]
之后发现我们很难固定其他配对的大小,可以考虑容斥,设\(g_i\)表示至少有\(i\)对满足\(a_i>b_i\)的方案,那么有\(g_i=f_i\times (n-i)!\)。
然后就可以直接容斥了,因为\(g_i\)中有\(\binom{i}{k}\)中方案选出\(k\)个配对满足,所以容斥系数就是\((-1)^{i-k}\binom{i}{k}\)
答案就是
\]
时间复杂度\(O(n^2)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=2100,P=1e9+9;
ll n,k,C[N][N],a[N],b[N],f[N][N],g[N],l[N],ans;
signed main()
{
scanf("%lld%lld",&n,&k);
if((n+k)&1)return puts("0")&0;
k=(n+k)/2;C[0][0]=1;
for(ll i=1;i<=n;i++)
for(ll j=0;j<=i;j++)
C[i][j]=(C[i-1][j]+(j?C[i-1][j-1]:0))%P;
for(ll i=1;i<=n;i++)scanf("%lld",&a[i]);
for(ll i=1;i<=n;i++)scanf("%lld",&b[i]);
sort(a+1,a+1+n);sort(b+1,b+1+n);
for(ll i=1;i<=n;i++)
for(ll j=1;j<=n;j++)
if(b[j]<a[i])l[i]=j;
else break;
f[0][0]=1;
for(ll i=1;i<=n;i++)
for(ll j=0;j<=n;j++)
f[i][j]=(f[i-1][j]+(j?f[i-1][j-1]*max(l[i]-j+1,0ll)%P:0))%P;
for(ll i=n,s=1;i>=0;i--,s=s*(n-i)%P)g[i]=f[n][i]*s%P;
for(ll i=k;i<=n;i++){
ll tmp=g[i]*C[i][k]%P;
(ans+=((i-k)&1)?P-tmp:tmp)%=P;
}
printf("%lld\n",ans);
return 0;
}
P4859-已经没有什么好害怕的了【容斥,dp】的更多相关文章
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- [BZOJ3622]已经没有什么好害怕的了(容斥DP)
给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...
- BZOJ 3622 Luogu P4859 已经没有什么好害怕的了 (容斥原理、DP)
题目链接 (Luogu) https://www.luogu.org/problem/P4859 (bzoj) https://www.lydsy.com/JudgeOnline/problem.ph ...
- P4859 已经没有什么好害怕的了(dp+二项式反演)
P4859 已经没有什么好害怕的了 啥是二项式反演(转) 如果你看不太懂二项式反演(比如我) 那么只需要记住:对于某两个$g(i),f(i)$ ---------------------------- ...
- 题解-洛谷P4859 已经没有什么好害怕的了
洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...
- 洛谷 P4859 已经没有什么好害怕的了 解题报告
已经没有什么好害怕的了 题目描述 已经使\(\tt{Modoka}\)有签订契约,和自己一起战斗的想法后,\(\tt{Mami}\)忽然感到自己不再是孤单一人了呢. 于是,之前的谨慎的战斗作风也消失了 ...
- bzoj 3622 已经没有什么好害怕的了 类似容斥,dp
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1213 Solved: 576[Submit][Status][ ...
- bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)
3622: 已经没有什么好害怕的了 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1033 Solved: 480[Submit][Status][ ...
- 【BZOJ3622】已经没有什么好害怕的了(动态规划,容斥)
[BZOJ3622]已经没有什么好害怕的了(动态规划,容斥) 题面 BZOJ 题解 很明显的,这类问题是要从至少变成恰好的过程,直接容斥即可. 首先我们要求的是(糖果>药片)=(药片>糖果 ...
随机推荐
- C++ 各种构造函数
c++构造函数的知识在各种c++教材上已有介绍,不过初学者往往不太注意观察和总结其中各种构造函数的特点和用法,故在此我根据自己的c++编程经验总结了一下c++中各种构造函数的特点,并附上例子,希望对初 ...
- redis 《scan命令》
此命令十分奇特建议参考文档:http://redisdoc.com/database/scan.html#scan 222222222222222并非每次迭代都要使用相同的 COUNT 值. ...
- OpenCV 传统分割测试
github官网源文件:https://github.com/opencv/opencv/tree/master/samples/python 最好是先克隆整个仓库下来,再测试里面的:floodfil ...
- Ubuntu16.04 + OpenCV源码 + Qt5.10 安装、配置
在VMWare中配置安装Ubuntu16.04.没有什么特别的地方,正常安装即可. 安装最新版qt,此时5.10.按照普通QT教程安装(需要勾选gcc),无须sudo,此时不用管OpenCV.地址:h ...
- LeetCode入门指南 之 二分搜索
上图表示常用的二分查找模板: 第一种是最基础的,查找区间左右都为闭区间,比较后若不等,剩余区间都不会再包含mid:一般在不需要确定目标值的边界时,用此法即可. 第二种查找区间为左闭右开,要确定targ ...
- SpringBoot笔记(3)
一.配置文件 1.文件类型 1.1.properties 同以前的properties用法 1.2.yaml 1.2.1.简介 YAML 是 "YAML Ain't Markup Langu ...
- SpringMVC笔记(1)
一.SpringMVC简介 1.1 MVC模型 MVC模型 MVC全名是Model View Controller,是模型(model)- 视图(view)- 控制器(controller)的缩写,是 ...
- Linux系统下的软件管理(rpm)、搭建第三方软件库、yum的黑名单
对wps-office进行模糊匹配照样可以查找出该软件yum clean all ? ? ? ?##清空yum缓存识别新配置 测验安装wps软件: 安装成功即可使用办公软件 1.yum install ...
- tomcat漏洞总结
描述 Tomcat是Apache 软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun 和其他一些公司及个人共同开发而成.由 ...
- Python - 面向对象编程 - 小实战(1)
题目 设计一个类Person,生成若干实例,在终端输出如下信息 小明,10岁,男,上山去砍柴 小明,10岁,男,开车去东北 小明,10岁,男,最爱大保健 老李,90岁,男,上山去砍柴 老李,90岁,男 ...