使用TensorRT集成推理inference

使用TensorRT集成进行推理测试。

使用ResNet50模型对每个GPU进行推理,并对其它模型进行性能比较,最后与其它服务器进行比较测试。

  1. ResNet-50 Inference performance: Throughput vs Batch size

在每个GPU上使用不同的批处理大小(从1到32)运行带有预训练的ResNet50模型的吞吐量测试。

图1显示了吞吐量(帧/秒)的结果。

结果在gpu和潜伏期(在右纵轴上表示)上是一致的。

Figure 1.  Resnet_50 Inference on each GPU. Server with 6 GPU’s

上面的曲线图显示,使用Batchsize为1-8的批处理可以达到7ms的延迟,并且从y轴来看,当Batchsize为4时,在7ms延迟窗口内我们可以得到670个帧/秒。

在运行测试时,我们发现默认情况下推理inference是在设备0上进行的,这意味着当前的TensorRT 推理引擎不能与GPU-GPU通信一起工作以最大限度地利用服务器中可用的GPU。如果目标是在多个GPU中运行同一个图形来提高吞吐量,Nvidia建议现在使用原生TensorFlow。

另一方面,TensorRT推理服务器(TRTIS)支持多个GPU,但不支持运行分布在多个GPU上的单个推理。TRTIS可以在多个GPU上运行多个模型(和/或同一模型的多个实例)以提高吞吐量。

2.All Models: Images/sec vs batch size vs Neural models

Figure 2. Throughput Inference Performance with Several Neural Models and Batch Sizes

使用不同的神经模型在不同的Batchsize中进行推理测试。

以Batchsize大小1、2、4、8、26和32显示运行推理inference的吞吐量和延迟。ResNet50以最低的延迟产生最高的吞吐量(图像/秒)。

Figure 3. Latency Inference Performance with Several Neural Models and Batch Sizes

3 All Models - R7425-T4-16GB versus Other servers and NVIDIA GPU

Figure 4. Throughput Inference Performance on R7425-T4-16GB Server versus Other Servers

Figure 5. Latency Inference performance on R7425-T4-16GB Server versus other servers

使用几种模型在服务器R740-P4和R7245-P4上进行了推理测试,并将它们的结果与R7425-T4-16GB的结果进行了比较。服务器R7425-T4-16GB的性能比ResNet50型号上的其它服务器快1.8倍,延迟只有一半。

使用TensorRT集成推理inference的更多相关文章

  1. 中继TensorRT集成

    中继TensorRT集成 介绍 NVIDIA TensorRT是用于优化深度学习推理的库.这种集成将使尽可能多的算子从Relay转移到TensorRT,从而无需调整调度,即可在NVIDIA GPU上提 ...

  2. TensorRT 进行推理

  3. tensorRT 构建推理引擎

  4. 10分钟内基于gpu的目标检测

    10分钟内基于gpu的目标检测 Object Detection on GPUs in 10 Minutes 目标检测仍然是自动驾驶和智能视频分析等应用的主要驱动力.目标检测应用程序需要使用大量数据集 ...

  5. Paddle Inference原生推理库

    Paddle Inference原生推理库 深度学习一般分为训练和推理两个部分,训练是神经网络"学习"的过程,主要关注如何搜索和求解模型参数,发现训练数据中的规律,生成模型.有了训 ...

  6. TensorRT加速 ——NVIDIA终端AI芯片加速用,可以直接利用caffe或TensorFlow生成的模型来predict(inference)

    官网:https://developer.nvidia.com/tensorrt 作用:NVIDIA TensorRT™ is a high-performance deep learning inf ...

  7. TensorRT 介绍

    引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...

  8. TensorRT Analysis Report分析报告

    TensorRT Analysis Report 一.介绍 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应用提供低延迟.高吞吐率的部署推理.TensorRT可 ...

  9. TensorRT简介-转载

    前言 NVIDIA TensorRT是一种高性能神经网络推理(Inference)引擎,用于在生产环境中部署深度学习应用程序,应用有 图像分类.分割和目标检测等,可提供最大的推理吞吐量和效率.Tens ...

随机推荐

  1. LNMP环境搭建Wordpress博客

    目录 LNMP架构工作原理 yum源安装 网站源包安装 LNMP是Linux Nginx MySQL/MariaDB  Php/perl/python 的简称,是近些年才逐渐发展起来的构架,发展非常迅 ...

  2. CVE-2014-3153分析和利用

    本文是结合参考资料对CVE-2014-3153的分析,当然各位看官可以看最后的资料,他们写的比我好. 在看CVE-2014-3153之前我们用参考资料4中例子来熟悉下这类漏洞是如何产生的: /** * ...

  3. Windows Server中企业证书服务的安装

    目录 企业证书服务的安装 证书服务的应用 企业证书服务的安装 企业证书服务是基于域的,所以需要该服务器是域控服务器. 添加角色,勾选 Active Directory 证书服务 然后后面的一直下一步, ...

  4. 安装全局消息钩子实现dll窗体程序注入

    说明{      通过设置全局消息钩子来实现dll注入,然后窗体有相关消息请求的时候就会自动加载注入dll, 然后在入口处做处理就可以了.注入方式简单很多,比代码注入和lsp等注入都简单,就不解释了. ...

  5. jquery常用操作整理

    1.数据中添加或者删除指定元素 var  arr=['red','yello','blue']; arr.push('green');  //添加元素 arr = $.grep(arr,functio ...

  6. php单列模式和工厂模式

    一.单例模式又称为职责模式,它用来在程序中创建一个单一功能的访问点,通俗地说就是实例化出来的对象是唯一的.所有的单例模式至少拥有以下三种公共元素: 1. 它们必须拥有一个构造函数,并且必须被标记为pr ...

  7. 变分贝叶斯学习(variational bayesian learning)及重参数技巧(reparameterization trick)

    摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布.BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概 ...

  8. webpack 快速入门 系列 —— 初步认识 webpack

    初步认识 webpack webpack 是一种构建工具 webpack 是构建工具中的一种. 所谓构建,就是将资源转成浏览器可以识别的.比如我们用 less.es6 写代码,浏览器不能识别 less ...

  9. 『居善地』接口测试 — 6、Httpbin服务介绍

    目录 1.Httpbin服务介绍 2.在Windows系统中部署Httpbin服务 3.在Linux系统中部署Httpbin服务 4.Httpbin访问方式 5.Httpbin常用调试接口 6.总结: ...

  10. [笔记] c和指针

    1.简介 2.基本概念 3.指针 计算机内存的最小单位是位(bit),每个位可以容纳值0或1,单独的位用处不大,通常许多位合成一组作为一个单位,以存储较大范围的值 每个字节包含8位,可以存储无符号值0 ...