Louvain


Introduce

Louvain算法是社区发现领域中经典的基于模块度最优化的方法,且是目前市场上最常用的社区发现算法。社区发现旨在发现图结构中存在的类簇(而非传统的向量空间)。


Algorithm Theory

  • 模块度(modularity)

    要想理解Louvain算法需先理解模块度,模块度是衡量一个网络社区划分好坏的度量指标,可以简单理解为“给定算法得到的图中的社区划分D,社区内节点的连边权重和与对应随机图中的连边权重和的差,可以理解为社区内边权重之于社区间边权重的比例,当然,社区内边权重越大,则模块度越大,社区中节点联系更加紧密,社区划分质量越好。”模块度的公式如下所示:

    以下均无向无权图为例,m为图中的边数,2m为图的总度数,A为邻接矩阵,当两个节点直接相连时Aij=1,否则Aij=0,ki为节点i的度,δ(ci,cj)为指示函数,当节点i、j位于同一个社区,其为1,否则为0。

    公式中比较难理解的是中括号中的第二项,啥意思呢? 之前提到随机图,这边公式中的第二项指的是随机图中度为ki和度为kj的两个节点相连的概率。得到的社区划分与随机图(无规律,且无明显社区结构)相差越大,则社区内连接越紧密,社区间连接越稀疏(即社区边界更明显),发现的社区质量越好。

    好了,模块度就理解到这儿,简单总结一下,模块度范围在[-0.5,1),一般模块度越高,发现的社区质量越好。(原始模块度论文表示当模块度值在0.3~0.7之间时,社区质量好

  • Louvain Flow Chart:

    现在进入正题,Louvain算法的总体框架(流程图)如下图所示

    Louvain是一个迭代更新算法(初始每个节点自成一个社区),每个迭代称为一个pass,每个pass都包括两个步骤。即Louvain算法等价于不断迭代以下两个步骤(阶段):

    (1)步骤1:首先,为每个节点分配一个单独的社区。其次对于每个节点i,考虑其邻居j,计算将节点i归入节点j所在社区模块度的增益。考虑节点i的所有邻居,并且将节点i归入到模块度增益的社区最大。如果节点i归到他邻居所在社区都没有模块度增益(即模块度增益为0或者负数)的话,那节点i仍然留在他原始的社区中。这个过程反复做,直到改变任何节点的社区标签都没有更进一步的模块度增益就停止,停止之后第一阶段就结束了。以上最重要的就是要搞懂模块度增益这玩意怎么算呢? 模块度增益可以通过以下公式计算。

    啥意思呢?我们可以化简一下得到如下式子:

    \Delta Q =[\frac{k_{i,in}}{2m}-\frac{\sum_{tot}k_i}{2m^2}]

    括号中第一项的意思可以理解为节点i加入邻居所在社区之后对应社区内的连边数。括号中第二项的意思可以理解为结点加入邻居社区后,对应社区间以及社区内的连边数。最大化该模块度增益,就是最大化这个差,这个差大了,就说明节点i加入到这个邻居社区之后,使得该社区的内聚度更高了,社区结构越明显了。emmm,模块度增益最大化大概就是这么个意思了。

    (2)步骤2:算法的第二阶段做的事情是,结合步骤1得到的初始社区划分建立一个新的网络,新网络的节点是在第一阶段发现的初始社区(把社区粗化成一个粗化节点),两个粗化节点之间的边由两个社区原始对应的社区间边的权重和(无向图即两个社区间相连的边数),同一社区节点之间的连边权重生成这个社区粗化节点的一个自环边。一旦完成了第二阶段,就将构成的新的网络输入第一阶段再进行迭代(因为粗化(层次的概念),每次网络中的初始社区数会变小,因此后面迭代的速度会更快)。

    至此,Louvain算法介绍结束。


Reference

  1. Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 2008(10): P10008.
  2. 社区发现算法——louvain完全解读
  3. 模块度与Louvain社区发现算法

Louvain 论文笔记的更多相关文章

  1. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  2. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  3. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  4. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  5. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

  6. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  7. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  8. 论文笔记(2):A fast learning algorithm for deep belief nets.

    论文笔记(2):A fast learning algorithm for deep belief nets. 这几天继续学习一篇论文,Hinton的A Fast Learning Algorithm ...

  9. 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN

    论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...

随机推荐

  1. HashMap源码:聊聊Map的遍历性能问题(一)

    目录 引言 迭代器测试 迭代器源码探究 其他遍历方法 增强型for循环 Map.forEach Stream.forEach 总结 附:四种遍历源码 附:完整测试类与测试结果+一个奇怪的问题 引言 今 ...

  2. TVM将深度学习模型编译为WebGL

    使用TVM将深度学习模型编译为WebGL TVM带有全新的OpenGL / WebGL后端! OpenGL / WebGL后端 TVM已经瞄准了涵盖各种平台的大量后端:CPU,GPU,移动设备等.这次 ...

  3. TensorRT原理图示

    TensorRT原理图示 NVIDIA的核心 TensorRT是有助于在NVIDIA图形处理单元(GPU)的高性能推理一个C ++库.它旨在与TensorFlow,Caffe,PyTorch,MXNe ...

  4. 编写HSA内核

    编写HSA内核 介绍 HSA提供类似于OpenCL的执行模型.指令由一组硬件线程并行执行.在某种程度上,这类似于 单指令多数据(SIMD)模型,但具有这样的便利:细粒度调度对于程序员而言是隐藏的,而不 ...

  5. 编译原理-翻译程序(Translator)

    分为编译程序(compiler)和解释程序(interpreter) 编译程序:把源程序(高级语言编写)转换成目标程序(汇编语言或机器语言编写). 解释程序:对源程序边翻译边执行. 编译型语言 优点: ...

  6. 「题解」小 R 打怪兽 monster

    本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题目描述 小 R 最近在玩一款游戏.在游戏中,小 R 要依次打 \(n\) 个怪兽,他需要打败至少 \(k\) 个怪兽才能通关.小 ...

  7. C语言数组初始化方式

    //一维数组初始化//初始化方法1 int arr[5] = {3,7,2,1,9}; //定义了一个长度是5的数组,并给每个元素赋值 //初始化方法2 int arr[5] = {3,7}; //给 ...

  8. windows10下JDK9的环境配置

    JDK版本:jdk-9.0.4_windows-x64_bin.exe windows版本:windows10 专业版 64位 需要在系统变量中新建如下3个变量: JAVA_HOME=jdk安装路径J ...

  9. 【NX二次开发】Block UI 双精度表

    属性说明 常规         类型 描述     BlockID     String 控件ID     Enable     Logical 是否可操作     Group     Logical ...

  10. 【NX二次开发】Block UI 指定矢量

    属性说明 属性   类型   描述   常规           BlockID    String    控件ID    Enable    Logical    是否可操作    Group    ...