1. Ugly Number II

Write a program to find the n-th ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5.

Example:

Input: n = 10
Output: 12
Explanation: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12 is the sequence of the first 10 ugly numbers.

Note:

  1. 1 is typically treated as an ugly number.
  2. n does not exceed 1690.

解法1

暴力搜索。假设已经知道了前n个丑数\(a_1, a_2, ..., a_n\),求第n+1个丑数,则有:

\[a_{n+1} = \min\{2*a_i, 3*a_j, 5*a_k\}, \quad \forall i, j, k\in[1, n]\\
s.t\quad a_{n+1} > a_n
\]
class Solution {
public:
int nthUglyNumber(int n) {
vector<int>u_n{1};
int prime[3] = {2, 3, 5};
while(u_n.size() < n){
int flag = 0;
int cur_n = INT_MAX;
for(int i = u_n.size() - 1; i >= 0; --i){
for(int j = 0; j < 3; ++j){
if(u_n[i]*prime[j] > u_n.back()){
cur_n = min(cur_n, u_n[i]*prime[j]);
}else{
flag++;
}
}
if(flag == 3)break;
}
u_n.push_back(cur_n);
}
return u_n.back();
}
};

但是提交会超时。。。

解法2 对解法1进行改进。显然丑数数组是有序的,可以用二分查找完成,查找的问题描述为:

寻找第一次出现的满足 \(k\times a_i > a_n\)的\(a_i\)

搜索过程为:对于区间\([l, r]\)

  • \(k\times a_{mid} > a_n\),则满足条件的肯定在\([l, mid]\)中
  • \(k\times a_{mid} \leq a_n\),则满足条件的肯定在\([mid+1, r]\)中
typedef long long int LL;
class Solution {
public:
int nthUglyNumber(int n) {
vector<LL>u_n{1};
int prime[3] = {2, 3, 5};
while(u_n.size() < n){
LL cur_n = LLONG_MAX;
for(int j = 0; j < 3; ++j){
int idx = bin_search(u_n, prime[j]);
cur_n = min(cur_n, prime[j]*u_n[idx]);
}
u_n.push_back(cur_n);
}
return u_n.back();
}
int bin_search(vector<LL>&nums, int k){
int last_num = nums.back();
int l = 0, r = nums.size()-1;
while(l < r){
int mid = (l + r) / 2;
if(nums[mid]*k > last_num)r=mid;
else l = mid + 1;
}
return l;
}
};

解法3 注意到事实:如果\(a_n\)是丑数,则\(2a_n, 3a_n, 5a_n\)也是丑数

typedef long long int LL;
class Solution {
public:
int nthUglyNumber(int n) {
priority_queue<LL, vector<LL>, greater<LL>>q;
set<LL>s;
int prime[3] = {2, 3, 5}; q.push(1);
s.insert(1);
LL ans = q.top();
for(int i = 0; i < n; ++i){
ans = q.top();
q.pop();
s.erase(ans);
for(int j = 0; j < 3; ++j){
if(s.find(ans*prime[j]) == s.end()){
q.push(ans*prime[j]);
s.insert(ans*prime[j]);
}
}
}
return ans;
}
};

解法4 根据解法三种事实,利用动态规划

class Solution {
public:
int nthUglyNumber(int n) {
int pre2 = 0, pre3 = 0, pre5 = 0;
int nums[1690];
nums[0] = 1;
for(int i = 1; i < n; ++i){
int ugly = min(nums[pre2]*2, min(nums[pre3]*3, nums[pre5]*5));
nums[i] = ugly;
if(ugly % 2 == 0)pre2++;
if(ugly % 3 == 0)pre3++;
if(ugly % 5 == 0)pre5++;
}
return nums[n-1];
}
};

【刷题-LeetCode】264. Ugly Number II的更多相关文章

  1. [leetcode] 264. Ugly Number II (medium)

    263. Ugly Number的子母题 题目要求输出从1开始数,第n个ugly number是什么并且输出. 一开始想着1遍历到n直接判断,超时了. class Solution { public: ...

  2. [LeetCode] 264. Ugly Number II 丑陋数 II

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  3. [LeetCode] 264. Ugly Number II 丑陋数之二

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  4. Leetcode 264. Ugly Number II

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  5. (medium)LeetCode 264.Ugly Number II

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  6. LeetCode——264. Ugly Number II

    题目: Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime fact ...

  7. leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes

    263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...

  8. 【LeetCode】264. Ugly Number II

    Ugly Number II Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose ...

  9. 【LeetCode】264. Ugly Number II 解题报告(Java & Python)

    标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ https://leetcode.com/prob ...

随机推荐

  1. 盘点 2021|「避坑宝典」为大家分享一下笔者在 2021 年所遇到“匪夷所思”的 Bug 趣事(上)

    正版内容:https://xie.infoq.cn/article/3145cd5f525fe26ce9d574c8d 2021尾声想跟大家说的话 虚则实之 引用 https://xie.infoq. ...

  2. git pull 拉取报错:fatal: refusing to merge unrelated histories

    fatal: refusing to merge unrelated histories(拒绝合并不相关的历史) 使用 git pull origin master --allow-unrelated ...

  3. js判断是电脑(pc)访问还是手机(mobile)访问

    <script> if ((navigator.userAgent.match(/(iPhone|iPod|Android|ios|iOS|iPad|Backerry|WebOS|Symb ...

  4. JAVA获取请求的IP地址

    private static final String[] ADDR_HEADER = { "X-Forwarded-For", "Proxy-Client-IP&quo ...

  5. 【LeetCode】1165. Single-Row Keyboard 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 字典 日期 题目地址:https://leetcode ...

  6. 【LeetCode】646. Maximum Length of Pair Chain 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 贪心算法 日期 题目地址:https://leetc ...

  7. OA系统中手写签批功能的实现

    一.需求背景 OA系统审批中,有对word或者pdf文件源文档在指定的位置可以插入相应的文字,其实就是一个审批的功能,到了指定的人那边,他可以进行签批.这个功能一般来说,是针对于领导方面,对于一个事情 ...

  8. python xlrd读Excel表

    1 xlrd第三方库 注意:xlrd较新版本不支持读xlsx表,需安装1.2.0版本(pip install xlrd==1.2.0)或使用其他库. xlrd库官方文档:https://xlrd.re ...

  9. Proximal Algorithms 5 Parallel and Distributed Algorithms

    目录 问题的结构 consensus 更为一般的情况 Exchange 问题 Global exchange 更为一般的情况 Allocation Proximal Algorithms 这一节,介绍 ...

  10. NFS 部署

    目录 NFS 部署 NFS简介 NFS应用 NFS工作流程图 NFS部署 服务端 客户端 测试NFS文件同步功能 NFS配置详解 NFS部分参数案例 统一用户 搭建考试系统 搭建步骤 配合NFS实现文 ...