曼哈顿距离最小生成树

codechef Dragonstone

首先,对于每一个点来说有用的边只有它向它通过 x=0,y=0,y=x,y=-x 切出来的八个平面的最近点。

证明 我不会

反正当结论记住就行了

然后我们就只需要考虑右上这个区间的点(因为看起来最好做)

其他的区间可以通过坐标变换到这个区间,并且因为边是双向的,可以只考虑y=-x切出来的右上的这四个区间。

对于一个点 $ B(x_1,y_1) $ 和这里的点 $ A(x_0,y_0) $ B是合法的当且仅当 $ x_1 > x_0 , y_1 > y_0 , x_1-x_0 \leq y_1 - y_0 $

再推一下,发现 $ y_1 > y_0 $ 这个条件然并卵,因为第三个条件和第一个条件已经限制了它

所以我们可以看成这两个式子 $ x_1 > x_0 , x_1 - y_1 \leq x_0 - y_0 $

同时,需要满足 $ x_1 + y_1 $ 尽量小

把 $ x_1 + y_1 $ 当成权值加入线段树,位置在 $ x_1 - y_1 $ 就好了

差需要离散化

别忘多组。。wa了好多次。。

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
using namespace std;
#define int long long
#define MAXN 800006
#define pb push_back
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define inf 0x3f3f3f3f3f3f3f3f
int n , q;
namespace SGT {
pii T[MAXN << 2];
void pushup( int rt ) {
T[rt] = min( T[rt << 1] , T[rt << 1 | 1] );
}
void build( int rt , int l , int r ) {
T[rt] = mp( inf , inf );
if( l == r ) return;
int m = l + r >> 1;
build( rt << 1 , l , m ) , build( rt << 1 | 1 , m + 1 , r );
}
void mdfy( int rt , int l , int r , int p , pii c ) {
if( l == r && p == l ) { T[rt] = min( T[rt] , c ); return; }
int m = l + r >> 1;
if( p <= m ) mdfy( rt << 1 , l , m , p , c );
else mdfy( rt << 1 | 1 , m + 1 , r , p , c );
pushup( rt );
}
pii que( int rt , int l , int r , int L , int R ) {
if( L <= l && R >= r ) return T[rt];
int m = l + r >> 1; pii res = mp( inf , inf );
if( L <= m ) res = min( res , que( rt << 1 , l , m , L , R ) );
if( R > m ) res = min( res , que( rt << 1 | 1 , m + 1 , r , L , R ) );
return res;
}
}
#define mx 600000
struct point{
int x , y , id;
} P[MAXN] ;
bool cmp( point x , point y ) {
return x.x == y.x ? x.y > y.y : x.x > y.x;
}
int A[MAXN] , a[MAXN];
struct edge{
int u , v , w;
} E[MAXN] ; int ecn;
void doit( ) {
sort( P + 1 , P + 1 + n , cmp );
for( int i = 1 ; i <= n ; ++ i ) A[i] = P[i].x - P[i].y;
sort( A + 1 , A + 1 + n );
int sz = unique( A + 1 , A + 1 + n ) - A - 1;
for( int i = 1 ; i <= n ; ++ i ) a[i] = lower_bound( A + 1 , A + 1 + sz , P[i].x - P[i].y ) - A ;
SGT::build( 1 , 1 , mx );
pii res = mp( 0 , 0 );
for( int i = 1 ; i <= n ; ++ i ) {
pii fd = SGT::que( 1 , 1 , mx , 1 , a[i] );
if( fd.se != 0x3f3f3f3f3f3f3f3f )
E[++ecn] = ( edge ) { P[i].id , fd.se , - P[i].x - P[i].y + fd.fi };
SGT::mdfy( 1 , 1 , mx , a[i] , mp( P[i].x + P[i].y , P[i].id ) );
}
}
bool cmpp( edge a , edge b ) {
return a.w < b.w;
}
int fa[MAXN];
int find( int x ) {
return x == fa[x] ? x : fa[x] = find( fa[x] );
} namespace tree {
int head[MAXN] , nex[MAXN] , to[MAXN] , wto[MAXN] , cn;
void ade( int u , int v , int w ) {
nex[++cn] = head[u] , to[cn] = v , wto[cn] = w , head[u] = cn;
}
#define MAXK 20
int G[MAXN][MAXK][2];
int dep[MAXN];
void init( ) {
dep[1] = 0;
memset( head , 0 , sizeof head );
memset( G , 0 , sizeof G );
cn = 0;
}
void dfs( int u , int fa ) {
dep[u] = dep[fa] + 1;
for( int i = head[u] ; i ; i = nex[i] ) {
int v = to[i];
if( v == fa ) continue;
G[v][0][0] = u , G[v][0][1] = wto[i];
for(int j = 1 ; j < 20 ; ++ j)
if(G[G[v][j - 1][0]][j - 1][0])
G[v][j][0] = G[G[v][j-1][0]][j-1][0],G[v][j][1] = max(G[v][j-1][1],G[G[v][j-1][0]][j-1][1]);
else break;
dfs( v , u );
}
}
int que( int u , int v ) {
if( dep[u] < dep[v] ) swap( u , v );
int suml = -inf , sumr = -inf;
if( dep[u] != dep[v] )
for( int k = MAXK - 1 ; k >= 0 ; -- k )
if( dep[G[u][k][0]] >= dep[v] )
suml = max( suml , G[u][k][1] ) , u = G[u][k][0];
if( u == v ) return max( suml , sumr );
for( int k = MAXK - 1 ; k >= 0 ; -- k )
if( G[u][k][0] != G[v][k][0] )
suml = max( suml , G[u][k][1] ) , sumr = max( sumr , G[v][k][1] ),
u = G[u][k][0] , v = G[v][k][0];
suml = max( suml , G[u][0][1] ) , sumr = max( sumr , G[v][0][1] );
return max( suml , sumr );
}
} signed main( ) {
freopen("fuck.in","r",stdin);
int T;cin >> T;
while( T-- ) {
cin >> n;
ecn = 0;
for( int i = 1 , u , v ; i <= n ; ++ i )
scanf("%lld%lld",&P[i].x,&P[i].y) , P[i].id = i;
doit( );
for( int i = 1 ; i <= n ; ++ i ) swap( P[i].x , P[i].y );
doit( );
for( int i = 1 ; i <= n ; ++ i ) P[i].x = -P[i].x;
doit( );
for( int i = 1 ; i <= n ; ++ i ) swap( P[i].x , P[i].y );
doit( );
sort( E + 1 , E + 1 + ecn , cmpp );
tree::init( );
for( int i = 1 ; i <= n ; ++ i ) fa[i] = i;
for( int i = 1 ; i <= ecn ; ++ i ) if( find( E[i].u ) != find( E[i].v ) )
fa[find( E[i].u )] = find( E[i].v ) ,
tree::ade( E[i].u , E[i].v , E[i].w ) ,
tree::ade( E[i].v , E[i].u , E[i].w );
tree::dfs( 1 , 1 );
cin >> q;
int u , v;
while( q-- ) {
scanf("%lld%lld",&u,&v);
printf("%lld\n",tree::que( u , v ));
}
}
}

曼哈顿距离最小生成树 codechef Dragonstone的更多相关文章

  1. 【POJ 3241】Object Clustering 曼哈顿距离最小生成树

    http://poj.org/problem?id=3241 曼哈顿距离最小生成树模板题. 核心思想是把坐标系转3次,以及以横坐标为第一关键字,纵坐标为第二关键字排序后,从后往前扫.扫完一个点就把它插 ...

  2. 51nod 1213 二维曼哈顿距离最小生成树

    1213 二维曼哈顿距离最小生成树 基准时间限制:4 秒 空间限制:131072 KB 分值: 160 难度:6级算法题  收藏  关注 二维平面上有N个坐标为整数的点,点x1 y1同点x2 y2之间 ...

  3. [51nod1213]二维曼哈顿距离最小生成树

    二维平面上有N个坐标为整数的点,点x1 y1同点x2 y2之间的距离为:横纵坐标的差的绝对值之和,即:Abs(x1 - x2) + Abs(y1 - y2)(也称曼哈顿距离).求这N个点所组成的完全图 ...

  4. LA 3662 Another Minimum Spanning Tree (曼哈顿距离最小生成树 模板)

    题目大意: 曼哈顿最小距离生成树 算法讨论: 同上. 这回的模板真的准了. #include <iostream> #include <cstring> #include &l ...

  5. POJ 3241 曼哈顿距离最小生成树 Object Clustering

    先上几个资料: 百度文库有详细的分析和证明 cxlove的博客 TopCoder Algorithm Tutorials #include <cstdio> #include <cs ...

  6. POJ 3241Object Clustering曼哈顿距离最小生成树

    Object Clustering Description We have N (N ≤ 10000) objects, and wish to classify them into several ...

  7. 曼哈顿距离MST

    https://www.cnblogs.com/xzxl/p/7237246.html 讲的不错 /* 曼哈顿距离最小生成树 poj 3241 Object Clustering 按照上面的假设我们先 ...

  8. Hdu4311 || 4312Meeting point-1/-2 n个点中任意选一个点使得其余点到该点曼哈顿距离之和最小

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...

  9. Atitti knn实现的具体四个距离算法 欧氏距离、余弦距离、汉明距离、曼哈顿距离

    Atitti knn实现的具体四个距离算法  欧氏距离.余弦距离.汉明距离.曼哈顿距离 1. Knn算法实质就是相似度的关系1 1.1. 文本相似度计算在信息检索.数据挖掘.机器翻译.文档复制检测等领 ...

随机推荐

  1. 【Java虚拟机11】线程上下文类加载器

    前言 目前学习到的类加载的知识,都是基于[双亲委托机制]的.那么JDK难道就没有提供一种打破双亲委托机制的类加载机制吗? 答案是否定的. JDK为我们提供了一种打破双亲委托模型的机制:线程上下文类加载 ...

  2. WEB前端工程师如何做职业规划?

    对于一个WEB前端的职业规划,其实是有各种的答案,没有哪种答案是完全正确的,全凭自己的选择,只要是自己选定了,坚持去认真走,就好.在这里, 我只是 简要说一下自己对于这块儿内容的理解.有一个观点想要分 ...

  3. redis中lua脚本的简单使用

    一.背景 在使用redis的过程中,发现有些时候需要原子性去操作redis命令,而redis的lua脚本正好可以实现这一功能.比如: 扣减库存操作.限流操作等等. redis的pipelining虽然 ...

  4. 关于下载pyton第三方库的细节

    1.下载Python第三方库有时候国外的网站网速很不好,需要选择国内的镜像网站去下载 阿里云 http://mirrors.aliyun.com/pypi/simple   中国科技大学 https: ...

  5. 小白自制Linux开发板 九. 修改开机Logo

    许久不见啊,今天我们继续来修改我们的系统. 通过前面的几篇文章我们已经能轻松驾驭我们的开发板了,但是现在都是追求个性化的时代,我们在开发板上打上了自己的Logo,那我们是否可以改变开机启动的Logo呢 ...

  6. Nginx(二):Nginx的四层(L4)和七层(L7)负载均衡

    OSI七层模型 和 TCP/IP四层模型 四层负载均衡( L4 Load Balancing ) 四层负载均衡,主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内 ...

  7. 最详细的windows10系统封装教程

    目录 自定义封装(定制)windows10教程 关于本教程及用到的工具的声明 第一阶段: 封装前的各种环境准备 安装vmware 创建虚拟机 对虚拟机进行分区 配置好BIOS 为虚拟机安装window ...

  8. 王爽汇编第五章,[bx]和loop指令

    目录 王爽汇编第五章,[bx]和loop指令 [bx]和loop指令 例子: 王爽汇编第五章,[bx]和loop指令 [bx]和loop指令 [bx]之前我们介绍寄存器的时候,已经很详细的说明过了,b ...

  9. 理解前端blob和ArrayBuffer,前端接受文件损坏的问题

    1 downloadTemplate().then(res =>{ 2 3 const data = res.data 4 const url = window.URL.createObject ...

  10. sql注入理解

    一.SQL注入产生的原因和危害 1.原因 SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序.而这些输入大都是SQL语法里的一些组合,通过执行SQL语句进而执行攻击者所要的操作,其主要原 ...