Codeforces 1503E - 2-Coloring(组合数学)
考虑什么样的 2-染色方式是符合题目要求的,首先蓝、黄颜色所形成的连通块个数必须 \(\le 2\),否则一定不合法,而显然如果两种颜色连通块个数都为 \(1\) 也不合法,以蓝色连通块个数为 \(1\),黄色连通块个数为 \(2\) 为例,稍微画个图即可发现合法的染色方式都如下图所示:
也就是说存在一个分割点 \(i\),使得第一个连通块全部在第 \(i\) 列左侧,第二个连通块全部在第 \(i\) 列右侧,那么显然两个连通块与第 \(i\) 列的交点分别是一段不相交区间 \((l_1,r_1),(l_2,r_2)\),我们假设第一个连通块的区间在第二个连通块的区间的上方,也就是如图所示的情况,那么我们假设 \(j=r_1,k=l_2\)(当然如果 \(j=k\) 蓝色连通块会被一分为二,也就是蓝色、黄色连通块个数都为 \(2\) 的情况),那么显然第一个连通块与直线 \(x=i\) 的交中最下方的点的坐标就是 \((j,i)\)(即图中的点 A),第二个连通块与直线 \(x=i\) 的交中最上方的点就是 \((k,i)\)(即图中的点 B)。接下来考虑怎样计算方案数,隔板法是肯定没问题的,不过这里有一种更简便的理解方式,以计算 \(A\) 左上角的方案数为例,它等价于从最左上角的点走到 \(A\) 的方案数,但由于 \(A\) 是这段区间中最下方的点,因此最后一步必须是向下走的,因此左上角的方案数就是从最左上角的点走到 \(A\) 上方的点的方案数,另外四块也同理,如图所示:
暴力枚举是 \(n^2m\) 的,通过前缀和优化可以做到 \(nm\)。对于 \((l_1,r_1)\) 在 \((l_2,r_2)\) 下方的情况只需乘个 \(2\) 即可,因为所有 \((l_1,r_1)\) 在 \((l_2,r_2)\) 上方的情况把它上下翻转都能够得到 \((l_1,r_1)\) 在 \((l_2,r_2)\) 下方的情况,因此它们构成了一个双射。对于蓝色连通块个数为 \(2\),黄色连通块个数为 \(1\) 的情况其实很 simple,只需做整个网络关于 \(y=x\) 对称的图形即可,但是这样蓝色、黄色连通块个数都是 \(2\) 的情况会被算重,因此第二次计算的时候需要强制令 \(k-j\ge 1\)。
时间复杂度 \(\mathcal O(nm)\)
const int MAXN=1<<12;
const int MOD=998244353;
int n,m,fac[MAXN+5],ifac[MAXN+5],ans=0;
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int ways(int x,int y){return 1ll*fac[x+y]*ifac[x]%MOD*ifac[y]%MOD;}
int main(){
scanf("%d%d",&n,&m);init_fac(MAXN);
for(int i=1;i<=m-1;i++){
int sum=0;
for(int j=1;j<=n-1;j++){
sum=(sum+1ll*ways(i,j-1)*ways(i-1,n-j))%MOD;
ans=(ans+1ll*sum*ways(m-i-1,j)%MOD*ways(m-i,n-j-1))%MOD;
}
} n^=m^=n^=m;
for(int i=1;i<=m-1;i++){
int sum=0;
for(int j=1;j<=n-1;j++){
ans=(ans+1ll*sum*ways(m-i-1,j)%MOD*ways(m-i,n-j-1))%MOD;
sum=(sum+1ll*ways(i,j-1)*ways(i-1,n-j))%MOD;
}
} printf("%d\n",(ans<<1)%MOD);
return 0;
}
Codeforces 1503E - 2-Coloring(组合数学)的更多相关文章
- Codeforces 1027E Inverse Coloring 【DP】
Codeforces 1027E Inverse Coloring 题目链接 #include<bits/stdc++.h> using namespace std; #define N ...
- cf111D Petya and Coloring 组合数学,二项式反演
http://codeforces.com/contest/111/problem/D Little Petya loves counting. He wants to count the numbe ...
- CodeForces #369 C. Coloring Trees DP
题目链接:C. Coloring Trees 题意:给出n棵树的颜色,有些树被染了,有些没有.现在让你把没被染色的树染色.使得beauty = k.问,最少使用的颜料是多少. K:连续的颜色为一组 ...
- codeforces 711C C. Coloring Trees(dp)
题目链接: C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- Codeforces 711 C. Coloring Trees (dp)
题目链接:http://codeforces.com/problemset/problem/711/C 给你n棵树,m种颜色,k是指定最后的完美值.接下来一行n个数 表示1~n树原本的颜色,0的话就是 ...
- Codeforces 995F Cowmpany Cowmpensation - 组合数学
题目传送门 传送点I 传送点II 传送点III 题目大意 给定一个棵$n$个点的有根树和整数$D$,给这$n$个点标号,要求每个节点的标号是正整数,且不超过父节点的标号,根节点的标号不得超过D. 很容 ...
- Codeforces 40E Number Table - 组合数学
题目传送门 传送门I 传送门II 题目大意 给定一个$n\times m$的网格,每个格子上要么填$1$,要么填$-1$,有$k$个位置上的数是已经填好的,其他位置都是空的.问有多少种填法使得任意一行 ...
- Codeforces 37D Lesson Timetable - 组合数学 - 动态规划
题目传送门 神奇的门I 神奇的门II 题目大意 有$n$组学生要上课2次课,有$m$个教室,编号为$1$到$m$.要确定有多少种不同的安排上课的教室的方案(每组学生都是本质不同的),使得它们满足: 每 ...
- Codeforces 711D Directed Roads - 组合数学
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...
随机推荐
- WPF中的命令(Command)
这节来讲一下WPF中的命令(Command)的使用. [认识Command] 我们之前说过,WPF本身就为我们提供了一个基础的MVVM框架,本节要讲的命令就是其中一环,通过在ViewModel中声明命 ...
- [no code][scrum meeting] Beta 1
$( "#cnblogs_post_body" ).catalog() 会议纪要 会议在微信群进行:集体反思alpha阶段博客分数尤其是scrum博客分数低的问题,讨论beta阶段 ...
- GT考试
比较神仙的$dp+KMP+Matrix$综合题目,比较值得一写 $0x00$:首先我打了一个爆搜 不过对正解并无任何启发...(逗比发言请忽略) $0x01$:基础$dp$ 状态还是比较好设的, 考虑 ...
- 计算机网络之应用层概述(C/S模型与p2p模型)
文章转自:https://blog.csdn.net/weixin_43914604/article/details/105582318 学习课程:<2019王道考研计算机网络> 学习目的 ...
- Nginx(一):初识Nginx
一.什么是Nginx? Nginx 是异步框架的Web服务器,也可以用作反向代理.负载平衡器和HTTP缓存.选择Nginx的一些优点:可以高并发连接.内存消耗少.成本低廉.配置文件简单.节省带宽.稳定 ...
- hdu 2473 Junk-Mail Filter(并查集)
题意: N个邮件需要鉴别. 两种操作: 1. M X Y:X和Y是同一种邮件 2.S X:X被误判(意味着X要被它从属的那个集合"踢出去"而所有其它的邮件的关系保持不变) 问最后总 ...
- hdu 2190 重建希望小学(数学,递推)
题意: N*3的教室,有2种砖,2*2.1*1. 问铺设教室的方案有多少种.(要铺满) 思路: 画一下图可以很快发现递推公式 代码: int main(){ int a[35]; mem(a,0); ...
- MySql表、约束、视图
MySql表.约束.视图 索引组织表 在InnoDB存储引擎中,表都是根据主键顺序组织存放的,这种存储方式的表成为索引组织表(index organized table). 每张表都有主键,如果创建表 ...
- java实现rsa加密算法【5min快速应用教程】
该篇文章的主要目的是让读者能够迅速应用到项目中,想要了解详细的rsa加密算法的,可以百度找到更多原理.深度分析的文章. RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一 ...
- Linux&c 文件操作,线程进程控制,网络编程,简单知识点梳理
一:文件操作 在linux下,一切皆文件,目录是文件,称为目录文件,内容是该目录的目录项(但是目录只有内核可以编辑,超级用户也不可以编辑),设备也是设备文件,在/dev存放的就是一些设备文件,linu ...