NOIP模拟赛T3 斐波那契
1.题目
求
\]
其中 \(F_k\) 表示斐波那契数列的第 \(k\) 项,对 \(10^9 + 7\) 取模。
多组数据。
2.题解
莫比乌斯反演板子题,但是太菜了,多做了一次反演,复杂度变为 \(tn\sqrt{n}\) 。实际是 \(t\sqrt{n}\)
直接推式子吧。
首先需要知道性质,\(\gcd(F_i,f_j)=F_{\gcd(i,j)}\)
这个性质是一道板子题,为洛谷上的斐波那契公约数,证明简单,本文略过。
\]
\]
我们发现 \(\gcd(i,j)\) 只有可能在 \(1\sim\min(n,m)\) 于是我们可以考虑去枚举这个 \(\gcd(i,j)\) ,然后乘上所对应的值,这样既为答案。
也就是说,写成这样(假设 \(n \leq m\)):
\(f(k)\) 表示的是公约数为 \(k\) 的数量。
\]
问题关键在于求 \(f(k)\) 。
\]
容易发现这就是一个嵌入式反演的变形,那么直接上莫比乌斯反演。
\]
\]
发现可以将 \(k\) 约掉,也就是:
\]
变为经典反演形式,开始进行反演。
\]
\]
然后改变枚举变量。
\]
也就是:
\]
然后交换求和顺序,以及内部改为枚举因数,最外层枚举 \(d\) ,就有:
\]
然后就预处理前缀和,然后套路整除分块回答。
时间复杂度为 \(t\sqrt{n}+nlogn\)
#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6+99 ,mod = 1e9+7;
int e[N+4],p[N+4],mu[N+4],tn;
void mobius(int n){
e[1]=1;mu[1]=1;
for(int i=2;i<=n;i++){
if(!e[i]){mu[i]=-1;p[++tn]=i;}
for(int j=1;j<=tn;j++){
if(i*p[j]>n) break;
mu[p[j]*i]=(i%p[j]==0 ? 0 :-mu[i]);
e[p[j]*i]=1;
if(i%p[j]==0) break;
}
}
}
int g[N+4],T,n,m,fib[N+4];
signed main(){
freopen("fibonacci.in","r",stdin);
freopen("fibonacci.out","w",stdout);
ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);
mobius(N);
cin>>T;
fib[1]=1,fib[2]=1;
for(int i=3;i<=N;i++){
fib[i]=fib[i-1]+fib[i-2];
fib[i]%=mod;
}
for(int i=1;i<=N;i++){
for(int j=i;j<=N;j+=i){
g[j]=(g[j]+fib[i]*mu[j/i]%mod+mod)%mod;
}
}
for(int i=1;i<=N;i++)
g[i]=(g[i]+g[i-1])%mod;
while(T--){
cin>>n>>m;
int ans=0;
for(int l=1,r=0;l<=min(n,m);l=r+1){
r=min(n/(n/l),m/(m/l));
ans=(ans+(n/l)*(m/l)%mod*(g[r]-g[l-1])%mod+mod)%mod;
}
cout<<ans<<"\n";
}
return 0;
}
NOIP模拟赛T3 斐波那契的更多相关文章
- 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契
牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...
- 20161005 NOIP 模拟赛 T3 解题报告
subset 3.1 题目描述 一开始你有一个空集,集合可以出现重复元素,然后有 Q 个操作 1. add s 在集合中加入数字 s. 2. del s 在集合中删除数字 s.保证 s 存在 3. c ...
- ztz11的noip模拟赛T3:评分系统
代码: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> ...
- 【2019.7.25 NOIP模拟赛 T3】树(tree)(dfs序列上开线段树)
没有换根操作 考虑如果没有换根操作,我们该怎么做. 我们可以求出原树的\(dfs\)序列,然后开线段树维护. 对于修改操作,我们可以倍增求\(LCA\),然后在线段树上修改子树内的值. 对于询问操作, ...
- 神奇的NOIP模拟赛 T3 LGTB 玩THD
LGTB 玩THD LGTB 最近在玩一个类似DOTA 的游戏名叫THD有一天他在守一座塔,对面的N 个小兵排成一列从近到远站在塔前面每个小兵有一定的血量hi,杀死后有一定的金钱gi每一秒,他都可以攻 ...
- 【2019.8.20 NOIP模拟赛 T3】小X的图(history)(可持久化并查集)
可持久化并查集 显然是可持久化并查集裸题吧... 就是题面长得有点恶心,被闪指导狂喷. 对于\(K\)操作,直接\(O(1)\)赋值修改. 对于\(R\)操作,并查集上直接连边. 对于\(T\)操作, ...
- 【2019.7.26 NOIP模拟赛 T3】化学反应(reaction)(线段树优化建图+Tarjan缩点+拓扑排序)
题意转化 考虑我们对于每一对激活关系建一条有向边,则对于每一个点,其答案就是其所能到达的点数. 于是,这个问题就被我们搬到了图上,成了一个图论题. 优化建图 考虑我们每次需要将一个区间向一个区间连边. ...
- [NOIP1997] P2626 斐波那契数列(升级版)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...
- noip模拟赛 斐波那契
分析:暴力分有90,真良心啊. a,b这么大,连图都建不出来,肯定是有一个规律.把每个点的父节点写出来:0 1 1 12 123 12345 12345678,可以发现每一个循环的长度刚好是斐波那契数 ...
随机推荐
- MySQL是如何实现事物隔离?
前言 众所周知,MySQL的在RR隔离级别下查询数据,是可以保证数据不受其它事物影响,而在RC隔离级别下只要其它事物commit后,数据都会读到commit之后的数据,那么事物隔离的原理是什么?是通过 ...
- 4. springmvc底层原理2
Spring mvc 是子容器 Spring 是 父容器 =================================================================== pub ...
- openresty 学习笔记番外篇:python访问RabbitMQ消息队列
openresty 学习笔记番外篇:python访问RabbitMQ消息队列 python使用pika扩展库操作RabbitMQ的流程梳理. 客户端连接到消息队列服务器,打开一个channel. 客户 ...
- 在 CUDA C/C++ kernel中使用内存
在 CUDA C/C++ kernel中使用内存 如何在主机和设备之间高效地移动数据.本文将讨论如何有效地从内核中访问设备存储器,特别是 全局内存 . 在 CUDA 设备上有几种内存,每种内存的作用域 ...
- 单点突破:MySQL之索引
前言 开发环境:MySQL5.7.31 什么是索引 在MySQL中,索引(Index)是帮助高效获取数据的数据结构. 我们可以将数据库理解为一本书,数据库中的各个数据列(column)就是目录中的章节 ...
- springmvc——自定义类型转换器
一.什么是springmvc类型转换器? 在我们的ssm框架中,前端传递过来的参数都是字符串,在controller层接收参数的时候springmvc能够帮我们将大部分字符串类型的参数自动转换为我们指 ...
- 十二、iptables基本管理
关闭firewalld,启动iptables服务 [root@proxy ~]# systemctl stop firewalld.service //关闭firewalld服务器 [root ...
- Django(65)jwt认证原理
前言 带着问题学习是最有目的性的,我们先提出以下几个问题,看看通过这篇博客的讲解,能解决问题吗? 什么是JWT? 为什么要用JWT?它有什么优势? JWT的认证流程是怎样的? JWT的工作原理? 我们 ...
- DB2 SQL0805N解决和思考
一.报错现象 这是一个在使用 DB2数据库过程中比较常见的错误, 报错信息如下 Exception stack trace: com.ibm.db2.jcc.am.SqlException: DB2 ...
- csp-s模拟测试44「D·E·F」
用心出题,用脚造数据 乱搞场 1 #include<bits/stdc++.h> 2 #define re register 3 #define int long long 4 #defi ...