Content

有一个长度为 \(n\) 的数列 \(\{a_1,a_2,\dots,a_n\}\),满足如下的递推公式:

  • \(i=1\) 时,\(a_1=x\)。
  • \(i=2\) 时,\(a_2=y\)。
  • \(i\geqslant 3\) 时,\(a_i=a_{i-1}+a_{i+1}\)。

求 \(a_n\bmod 10^9+7\) 的值。

数据范围:\(1\leqslant n\leqslant 2\times 10^9\),\(|x|,|y|\leqslant 10^9\)。

Solution

对于 \(i\geqslant 3\),我么不妨将这个式子移项,得到 \(a_{i+1}=a_i-a_{i-1}\)。然后先写下如下式子:

\[\begin{aligned}a_3=a_2-a_1&=y-x\\a_4=a_3-a_2&=(y-x)-y=-x\\a_5=a_4-a_3&=-x-(y-x)=-y\\a_6=a_5-a_4&=-y-(-x)=x-y\\a_7=a_6-a_5&=x-y-(-y)=x\color{red}=a_1\\a_8=a_7-a_6&=x-(x-y)=y\color{Red}=a_2\end{aligned}
\]

我们发现,当 \(i=7\) 的时候,\(a_7\) 的值又变回了 \(a_1\)。因此我们发现了一个长度为 \(6\) 的循环节。那么 \(a_i\) 也就不难表示出来了:

\[a_i=\begin{cases}x&i\bmod 6=1\\y&i\bmod 6=2\\y-x&i\bmod 6=3\\-x&i\bmod 6=4\\-y&i\bmod 6=5\\x-y&i\bmod 6=0\end{cases}
\]

直接根据这个公式计算 \(a_n\) 即可,即为 \(a_{n\bmod 6}\),注意对负数取模时,先加上模数再去取模。

Code

  1. const int mod = 1e9 + 7;
  2. int f[7];
  3. int main() {
  4. int x = Rint, y = Rint, n = Rint;
  5. f[1] = x, f[2] = y, f[3] = y - x, f[4] = -x, f[5] = -y, f[6] = x - y;
  6. return write((f[(n - 1) % 6 + 1] % mod + mod) % mod), 0;
  7. }

CF450B Jzzhu and Sequences 题解的更多相关文章

  1. CF450B Jzzhu and Sequences(矩阵加速)

    CF450B Jzzhu and Sequences 大佬留言:这.这.不就是矩乘的模板吗,切掉它!! You are given xx and yy , please calculate $f_{n ...

  2. CodeForces - 450B Jzzhu and Sequences —— 斐波那契数、矩阵快速幂

    题目链接:https://vjudge.net/problem/CodeForces-450B B. Jzzhu and Sequences time limit per test 1 second ...

  3. CodeForces 450B Jzzhu and Sequences (矩阵优化)

    CodeForces 450B Jzzhu and Sequences (矩阵优化) Description Jzzhu has invented a kind of sequences, they ...

  4. Codeforces Round #257 (Div. 2 ) B. Jzzhu and Sequences

    B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...

  5. codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)

    题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...

  6. Codeforces450 B. Jzzhu and Sequences

    B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input standa ...

  7. 数学 找规律 Jzzhu and Sequences

    A - Jzzhu and Sequences   Jzzhu has invented a kind of sequences, they meet the following property: ...

  8. Codeforces Round #257(Div. 2) B. Jzzhu and Sequences(矩阵高速幂)

    题目链接:http://codeforces.com/problemset/problem/450/B B. Jzzhu and Sequences time limit per test 1 sec ...

  9. CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解

    思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...

随机推荐

  1. Qt5 connect 重载信号和槽

    转载文章超哥的经验之谈---Qt5 connect使用之"重载信号和槽" 在Qt4中,关联信号与槽是要使用到SIGNAL()和SLOT()这两个宏. QLabel *label = ...

  2. Codeforces 986F - Oppa Funcan Style Remastered(同余最短路)

    Codeforces 题面传送门 & 洛谷题面传送门 感谢此题教会我一个东西叫做同余最短路(大雾 首先这个不同 \(k\) 的个数 \(\le 50\) 这个条件显然是让我们对每个 \(k\) ...

  3. Redis高并发处理常见问题及解决方案

    1. 大型电商系统高流量系统设计 场景: 大量电商系统每天要处理上亿请求,其中大量请求来自商品访问.下单.商品的详情是时刻变化,由于请求量过大,不会频繁去服务端获取商品信息,导致服务器压力极大.需要用 ...

  4. 【机器学习与R语言】7-回归树和模型树

    目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达 ...

  5. 【Workflows】 WGS/WES Mapping to Variant Calls

    WGS/WES Mapping to Variant Calls - Version 1.0 htslib官网上给的一个WGS/WES的流程.关于htslib.samtools和bcftools之间的 ...

  6. nohup使用

    nohup:不挂断运行 在忽略挂起信号的情况下运行给定的命令,以便在注销后命令可以在后台继续运行. 可以这么理解:不挂断的运行,注意并没有后台运行的功能,就是指,用nohup 运行命令可以是命令永远运 ...

  7. QQ空间技术架构之深刻揭秘

    QQ空间技术架构之深刻揭秘 来源: 腾讯大讲堂  发布时间: 2012-05-17 17:24  阅读: 7822 次  推荐: 4   [收藏]   QQ 空间作为腾讯海量互联网服务产品,经过近七年 ...

  8. Linux 软件安装位置选择指南

    Linux 软件安装   Linux 下安装软件不像 Windows 下安装这么简单,Windows 下会自动选择合适安装路径,而 Linux 下安装路径大部分完全由自己决定,我可以将软件安装到任意可 ...

  9. 《Redis设计与实现》知识点目录

    Redis设计与实现 第一部分 数据结构与对象 第二章 简单动态字符串 p8 简单动态字符串SDS 2.1 SDS的定义 p9 每个sds.h/sdshdr结构表示一个SDS值 2.2 SDS与C字符 ...

  10. Redis | 第10章 二进制数组、慢查询日志和监视器《Redis设计与实现》

    目录 前言 1. 二进制位数组 1.1 位数组的表示 1.2 GETBIT 命令的实现 1.3 SETBIT 命令的实现 1.4 BITECOUNT 命令的实现 1.5 BITOP 命令的实现 2. ...