一 生成器

1.1 基本概念

元组推导式是是生成器(generator)

生成器定义

  • 生成器可以实现自定义,迭代器是系统内置的,不能够更改
  • 生成器的本质就是迭代器,只不过可以自定义.

生成器有两种定义的方式:

  1. 生成器表达式 (里面是推导式,外面用圆括号)
  2. 生成器函数

1.2  元组推导式的形式来写生成器

gen = (i * 2 for i in range(5))
print(gen)
from collections import Iterator
print(isinstance(gen,Iterator))

执行

[root@node10 python]# python3 test.py
<generator object <genexpr> at 0x7fb5ec2e6200>
True

1.3 使用for调用生成器

gen = (i * 2 for i in range(5))
print(gen)
from collections import Iterator
print(isinstance(gen,Iterator))
for i in gen:
print (i)

执行

[root@node10 python]# python3 test.py
<generator object <genexpr> at 0x7fd817c1f200>
True
0
2
4
6
8

1.4 用next进行调用生成器

gen = (i * 2 for i in range(5))
print(gen)
from collections import Iterator
print(isinstance(gen,Iterator))
for i in gen:
print (i)
gen = (i * 2 for i in range(5))
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)

执行

[root@node10 python]# python3 test.py
<generator object <genexpr> at 0x7f0b564d0200>
True
0
2
4
6
8
0
2
4
6
8

越界错误

gen = (i * 2 for i in range(5))
print(gen)
from collections import Iterator
print(isinstance(gen,Iterator))
for i in gen:
print (i)
gen = (i * 2 for i in range(5))
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
#在添加一个会出现越界错误
res = next(gen)
print(res)

执行

1.5 利用for 和next 配合使用 调用生成器

gen = (i * 2 for i in range(5))
print(gen)
from collections import Iterator
print(isinstance(gen,Iterator))
gen = (i * 2 for i in range(5))
for i in range(3):
res = next(gen)
print(res)

执行

[root@node10 python]# python3 test.py
<generator object <genexpr> at 0x7f5e78ef1200>
True
0
2
4

二 生成器函数

2.1 yield  生成器函数

yield 类似于 return
共同点在于:执行到这句话都会把值返回出去
不同点在于:yield每次返回时,会记住上次离开时执行的位置 , 下次在调用生成器 , 会从上次执行的位置往下走
而return直接终止函数,每次重头调用.
yield 6 和 yield(6) 2种写法都可以 yield 6 更像 return 6 的写法 推荐使用

定义一个生成器

def func():
print("one")
yield 1 print("two")
yield 2 print("three")
yield 3 # 初始化生成器函数 => 返回一个生成器对象 简称生成器
gen = func() res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)

执行

[root@node10 python]# python3 test.py
one
1
two
2
three
3

执行过程

首先初始化生成器函数 返回生成器对象,简称生成器
有了生成器之后 可以使用next进行依次的调用
第一次 print(one) 记录当前的状态,暂停等待下一次调用 通过yield 1 返回1 ,阻塞代码
第二次 print(two) 记录当前的状态,暂停等待下一次调用 通过yield 2 返回2 ,阻塞代码
第三次 print(three) 记录当前的状态,暂停等待下一次调用 通过yield 3 返回3 ,阻塞代码
到此已经没有值可以在拿出来了,如果在调用,直接越界报错.

优化生成器

def func():
for i in range(1,101):
yield "我的球衣号码是%d" % (i) # 初始化生成器函数 => 返回一个生成器对象
gen = func() for i in range(30):
res = next(gen)
print(res) for i in range(50):
res = next(gen)
print(res)

2.2 send生成器函数

把值发送给上一个yield 进行接收

next和send区别:

  1. next 只能取值
  2. send 不但能取值,还能发送值

send注意点:

  1. 第一个 send 不能给 yield 传值 默认只能写None (语法的硬性要求)
  2. 最后一个yield 接受不到send的发送值
def func():
print("start")
res = yield 1
print(res) res = yield 2
print(res) res = yield 3 print(res)
print("end")
#初始化生成器函数,生成生成器
gen = func()
# 生成器.send 第一次发送的时候必须参数是None 硬性语法
res = gen.send(None) #这里相当于res = next(gen)
print(res)

执行

[root@node10 python]# python3 test.py
start
1

第二次可以自定义要发送的值

def func():
print("start")
res = yield 1
print(res) res = yield 2
print(res) res = yield 3 print(res)
print("end")
gen = func()
# 生成器.send 第一次发送的时候必须参数是None 硬性语法
res = gen.send(None)
print(res)
res = gen.send("111")
print(res) res = gen.send("222")
print(res)

执行

[root@node10 python]# python3 test.py
start
1
111
2
222
3

如果没有yield了 , 就没有返回值给你, 在调用直接报错
如果就像在最后一次调用的时候执行剩下的没跑完的代码,使用try..except..来进行异常处理

def func():
print("start")
res = yield 1
print(res) res = yield 2
print(res) res = yield 3 print(res)
print("end")
gen = func()
# 生成器.send 第一次发送的时候必须参数是None 硬性语法
res = gen.send(None)
print(res)
res = gen.send("111")
print(res) res = gen.send("222")
print(res) res = gen.send("222")
print(res)

执行

[root@node10 python]# python3 test.py
start
1
111
2
222
3
222
end
Traceback (most recent call last):
File "test.py", line 25, in <module>
res = gen.send("222")
StopIteration

执行过程

发送的时候 是先发送 ,后接受

#第一次发送的时候必须参数是None 硬性语法
print(start) 记录当前状态, 把yield 1这个值返回取出 , 暂定阻塞,等待下一次调用.
# 第二次调用时,可以自定义要发送的值 被yield 1 这一行收走了,res接收到send发送过去的值为111
那么从这一行继续向下执行
print(res) 111
res = yield 2
把2 返回给res = gen.send(111) 这一行 res 接收到2 print(res) #第三次调用时,发送自定义值222,被res = yield 2接收到 print(res) => 222
然后执行res = yield 3 记录当前状态,把yield 3 这个值返回取出, 代码暂停阻塞,等待下一次调用.

2.3 yield from 函数

  • 将一个可迭代对象变成一个迭代器返回
def func():
listvar = [1,2,3,4,4,5]
# yield listvar
yield from listvar # 初始化生成器函数 返回生成器对象 简称生成器
gen = func()
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
res = next(gen)
print(res)
print("<=for=>")
for i in gen:
print(i)

执行

[root@node10 python]# python3 test.py
1
2
3
4
<=for=>
4
5

020.Python生成器和生成器函数的更多相关文章

  1. python迭代器和生成器(3元运算,列表生成式,生成器表达式,生成器函数)

    1.1迭代器 什么是迭代器: 迭代器是一个可以记住遍历的位置对象 迭代器对象从集合的第一个元素元素开始访问,直到所有元素被访问完结束,迭代器只能往前不会后退. 迭代器有两个基本方法:iter ,nex ...

  2. python中的生成器函数是如何工作的?

    以下内容基于python3.4 1. python中的普通函数是怎么运行的? 当一个python函数在执行时,它会在相应的python栈帧上运行,栈帧表示程序运行时函数调用栈中的某一帧.想要获得某个函 ...

  3. python学习 day11 (3月16日)----(生成器内置函数)

    1生成器 1生成器的本质 一定是迭代器(反之不一定(用send(生成器特有方法)验证))2生成器是可以让程序员自己定义的一个迭代器3生成器的好处,节省内存空间4生成器的特性,一次性的,惰性机制,从上往 ...

  4. 【学习笔记】--- 老男孩学Python,day13 生成器,生成器函数,各种推倒式和生成器表达式

    1. 生成器和生成器函数 生成器的本质就是迭代器 生成器的三种创建办法: 1.通过生成器函数 2.通过生成器表达式创建生成器 3.通过数据转换   2. 生成器函数: 函数中包含了yield的就是生成 ...

  5. Python进阶(四)----生成器、列表推导式、生成器推导式、匿名函数和内置函数

    Python进阶(四)----生成器.列表推导式.生成器推导式.匿名函数和内置函数 一丶生成器 本质: ​ 就是迭代器 生成器产生的方式: ​ 1.生成器函数

  6. Python入门篇-生成器函数

    Python入门篇-生成器函数 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.生成器概述 1>.生成器generator 生成器指的是生成器对象,可以由生成器表达式得到, ...

  7. python之序列去重以及生成器、生成器函数、生成器表达式与迭代器浅谈

    首先要明确序列值类型是否可哈希,因为可哈希的值很简单就可以用 in /not in 写个生成器去判断,如果是不可哈希的就要去转换为可哈希的再用 in/not in 去判断 原地不可变类型(可哈希): ...

  8. python之迭代器 生成器 枚举 常用内置函数 递归

    迭代器 迭代器对象:有__next__()方法的对象是迭代器对象,迭代器对象依赖__next__()方法进行依次取值 with open('text.txt','rb',) as f: res = f ...

  9. Python第六章-函数05-迭代器&生成器

    python作为一个既面向对象,又支持函数式编程的语言,函数的使用方面有很多特点. 比如:闭包,装饰器,迭代器等 函数的高级应用 容器:生活中常见的容器有哪些?袋子,盆子,水杯,书包,铅笔盒... 容 ...

随机推荐

  1. Dynamics CRM报表无法访问提示“报表服务器无法访问或使用加密密钥。你可能需要将服务器添加到扩展组,或重新导入”

    当我们部署Dynamics CRM的环境的时候如果报表配置的不规范会出现很多问题,尤其是这个问题相对来说更棘手,解决起来非常麻烦. 网上很多教程都说直接到报表配置页删除密钥就可以了,实际上删除的时候会 ...

  2. Horovod Install

    Horovod documentation 安装 [Step1]安装Open MPI 注意: Open MPI 3.1.3 安装有些问题, 可以安装 Open MPI 3.1.2 或者 Open MP ...

  3. S-Trees UVA - 712

      A Strange Tree (S-tree) over the variable set Xn = {x1,x2,...,xn} is a binary tree representing a ...

  4. sql指令,增,删,查,改

    增 insert into table (name,sex,age) value('张三','男','20')   向表中的name,sex,age,分别添加张三,男,20的内容 查 select  ...

  5. 使用MyQR模块生成二维码

    一.介绍 MyQR 模块是 python 的一个外部库,能够将文本或网址转为二维码,扫了之后就能查看文本或跳转到相应网站. 它是一个外部库,需要导入: pip install -i https://p ...

  6. 1.人工智能解读与Python简介

    人工智能解读 Python解读 Python 简介 1.程序员: 程序设计人员. 2.程序: 一组计算机能识别和执行的指令,是实现某种需求的软件. 3.操作系统: 管理和控制计算机软件与硬件资源的程序 ...

  7. Nginx配置图片请求

    Nginx的下载安装这里就不赘述了, 在Nginx的配置文件nginx.conf 或者 自定义的配置文件中加入如下配置. server {       listen 80;       server_ ...

  8. Django中的表单

    目录 表单 Django中的表单 用表单验证数据 自定义验证 表单 HTML中的表单是用来提交数据给服务器的,不管后台服务器用的是 Django  还是 PHP还是JSP还是其他语言.只要把 inpu ...

  9. C#-宽带连接

    public static string Connect(string UserS,string PwdS) { string arg = @"rasdial.exe 宽带连接" ...

  10. MFC ListControl用法合集

    以下未经说明,listctrl 默认view 风格为report ------------------------------------------------------------------- ...