题目

剑指 Offer 42. 连续子数组的最大和

思路1(分析数组的规律)

  • 我们可以从头到尾逐个累加,若之前的累加和小于0,那就从丢弃之前的累加,从当前开始重新累加,同时在遍历过程中比较记录下最大值

    • curSum记为当前最大值,为 0,以 [-2,1,-3,4,-1,2,1,-5,4] 为例:

      1. 首先加上 -2,此时 curSum 为 -2
      2. 由于 -2 小于 0,所以丢弃,然后再加上 1,此时 curSum 为 1
      3. 再加上 -3,此时 curSum 为 -2
      4. 由于 -2 小于 0,所以再次丢掉,然后加上 4,此时 curSum 为4
      5. 然后加上 -1,此时 curSum 为 3
      6. 再加上 2,此时 curSum 为 5
      7. 再加上 1,此时 curSum 为 6
      8. 再加上 -5,此时 curSum 为 1
      9. 最后再加上最后一个 4,此时 curSum 为 5
      10. 在这每次遍历中,我们使用一个变量 res 存储最大值,可以找到最大值为 6

代码

class Solution {
public int maxSubArray(int[] nums) { int length = nums.length;
// 最大总和值
int res = Integer.MIN_VALUE;
// 当前总和
int curSum = 0; for (int i = 0; i < length; i++) {
if (curSum < 0) {
// 如果 i 之前总和值小于0,那就从 i 开始重新计算
curSum = nums[i];
} else {
// 否则加上当前的值
curSum += nums[i];
} // 寻找最大值
if (curSum > res) {
res = curSum;
}
} return res;
}
}

复杂度分析

  • 时间复杂度:\(O(N)\)
  • 空间复杂度:\(O(1)\)

思路2(动态规划)

  • 和思路一差不多动态规划就是利用历史记录,避免重复计算。所以也是从头到尾逐个累加,若之前的累加和小于0,那就从丢弃之前的累加,从当前开始重新累加,我们可以定义一个 dp 数组,dp[i] 代表的意义就是以 i 结尾的子数组的最大值。因此我们可以得出状态转移方程:

    \[dp[i] = \begin{cases} dp[i-1]+nums[i], & \text{if } dp[i-1]<0 \\ nums[i], & \text{if } dp[i-1]\geq0 \end{cases}
    \]
  • 既然我们可以得到以 i 结尾子数组的最大值,那么只需要从这些最大值中找到最大的一个就是结果了~

代码

class Solution {
public int maxSubArray(int[] nums) {
int length = nums.length;
int[] dp = new int[length];
dp[0] = nums[0];
int res = dp[0]; for (int i = 1; i < length; i++) {
dp[i] = dp[i-1] > 0 ? dp[i-1]+nums[i] : nums[i];
res = Math.max(res, dp[i]);
} return res;
}
}

可以进一步优化:

class Solution {
public int maxSubArray(int[] nums) {
int length = nums.length;
// 记录子数组中的最大值
int res = Integer.MIN_VALUE;
// 记录前一段子数组之和
int preSum = 0; for (int num : nums) {
// 意思也是判断前一个字数组之和是否小于0
preSum = Math.max(num, preSum + num);
// 然后记录最大值
res = Math.max(res, preSum);
} return res;
}
}

复杂度分析

  • 时间复杂度:\(O(N)\)
  • 空间复杂度:\(O(1)\)

力扣 - 剑指 Offer 42. 连续子数组的最大和的更多相关文章

  1. 刷题-力扣-剑指 Offer 42. 连续子数组的最大和

    剑指 Offer 42. 连续子数组的最大和 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de ...

  2. 剑指 Offer 42. 连续子数组的最大和 + 动态规划

    剑指 Offer 42. 连续子数组的最大和 题目链接 状态定义: 设动态规划列表 \(dp\) ,\(dp[i]\) 代表以元素 \(4nums[i]\) 为结尾的连续子数组最大和. 为何定义最大和 ...

  3. 【Java】 剑指offer(42) 连续子数组的最大和

    本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 输入一个整型数组,数组里有正数也有负数.数组中一个或连续的多个整/ ...

  4. 剑指 Offer 42. 连续子数组的最大和

    题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求时间复杂度为\(O(n)\). 示例1: 输入: nums = [-2,1,-3,4,-1,2,1 ...

  5. 每日一题 - 剑指 Offer 42. 连续子数组的最大和

    题目信息 时间: 2019-06-30 题目链接:Leetcode tag: 动态规划 难易程度:简单 题目描述: 输入一个整型数组,数组里有正数也有负数.数组中的一个或连续多个整数组成一个子数组.求 ...

  6. 【剑指Offer】连续子数组的最大和 解题报告(Python)

    [剑指Offer]连续子数组的最大和 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews ...

  7. 《剑指Offer》- 连续子数组的最大和或最小和

    前言 本文是<剑指Offer>系列(JavaScript版)的第一篇,题目是"连续子数组的最大和或最小和". 话不多说,开始"打怪"修炼... 一. ...

  8. Go语言实现:【剑指offer】连续子数组的最大和

    该题目来源于牛客网<剑指offer>专题. HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学.今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向 ...

  9. 《剑指offer》连续子数组的最大和

    本题来自<剑指offer> 反转链表 题目: 思路: C++ Code: Python Code: 总结:

随机推荐

  1. vue 2.0源码学习笔记—new Vue ( Vue 初始化过程 )

    new Vue(Vue 初始化) 一个vue实例化到底经历了什么?已下是博主自己的总结,不正确的地方请指出,谢谢~ 一.简述 从使用角度来看,挂载的顺序如下 1. $slots 2. $scopedS ...

  2. 【Spring】重新认识 IoC

    前言 IoC (Inversion of control) 并不是Spring特有的概念. IoC 维基百科的解释: In software engineering, inversion of con ...

  3. 【UE4 C++】获取运行时间、设置时间流速、暂停游戏

    基于UGameplayStatics 获取运行时间 /** Returns the frame delta time in seconds, adjusted by time dilation. */ ...

  4. rocketmq优雅停机往事

    1 时间追溯到2018年12月的某一天夜晚,那天我正准备上线一个需求完就回家,刚点下发布按钮,告警就响起,我擦,难道回不了家了?看着报错量只有一两个,断定只是偶发,稳住不要慌. 把剩下的机器发完,又出 ...

  5. Jmeter之BeanShell 断言

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15436864.html 博客主页:https://www.cnblogs.com/testero ...

  6. Java:ConcurrentHashMap类小记-2(JDK7)

    Java:ConcurrentHashMap类小记-2(JDK7) 对 Java 中的 ConcurrentHashMap类,做一个微不足道的小小小小记,分三篇博客: Java:ConcurrentH ...

  7. 2021.9.21考试总结[NOIP模拟58]

    T1 lesson5! 开始以为是个无向图,直接不懂,跳去T2了. 之后有看了一眼发现可暴力,于是有了\(80pts\). 发现这个图是有拓扑序的,于是可以用拓扑排序找最长路径.先找原图内在最长路径上 ...

  8. Spring中自定义Schema扩展机制

    一.前言 Spring 为基于 XML 构建的应用提供了一种扩展机制,用于定义和配置 Bean. 它允许使用者编写自定义的 XML bean 解析器,并将解析器本身以及最终定义的 Bean 集成到 S ...

  9. 全志Linux Tina编译demoOmxVdec错误

    测试裸流 Making install in demoOmxVdec make[6]: Entering directory '/home/liuxueneng/WorkCode/Homlet-Tin ...

  10. 【java+selenium3】模拟键盘操作 (十二)

    一.键盘操作 用代码来模拟键盘的Enter或一系列的组合键,前面使用sendkeys()方法模拟键盘的输入,除此之外还可以模拟键盘组合键输入如下: 整理一些比较常用的键盘操作如下: sendKeys( ...