类似cf582E,先建出表达式树,然后树形dp+离散+min和max卷积的优化,复杂度为$o(nm|E|)$,无法通过

考虑我们仅关心于这$n$个数的大小关系,具体来说,假设给出的数组是$a_{i,j}$(其中$0\le i<m,1\le j\le n$),对于某一个$j$,将$a_{i,j}$从小到大排序后,依次是$a_{p_{i},j}$($0\le i<m$,$p_{i}$为$[0,m)$的一个排列)

暴力枚举$j$和$p_{i}$,接下来去统计答案不小于$a_{p_{i},j}$的方案数:

对于树形dp的状态上,我们仅需要记录小于$a_{p_{i},j}$和不小于$a_{p_{i},j}$的方案数,换言之是$o(1)$转移,但dp次数为$o(nm)$,因此总复杂度仍然是$o(nm|E|)$

但注意到,影响dp过程的只有对于每一个$i$,$[a_{i,j}\ge a_{p_{i},j}]$的值,不难发现至多$2^{m}$种,预处理出每一种值的结果,再枚举$j$和$p_{i}$求出是哪一种值即可

时间复杂度为$o(2^{m}|E|+nm)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 50005
4 #define mod 1000000007
5 stack<int>st_op,st_num;
6 int V,n,m,p,ans,b[11][N],a[N],ls[N],rs[N],id[11],f[1<<10][N][2];
7 char s[N];
8 bool cmp(int x,int y){
9 return b[x][p]>b[y][p];
10 }
11 void merge(){
12 a[++V]=st_op.top();
13 st_op.pop();
14 rs[V]=st_num.top();
15 st_num.pop();
16 ls[V]=st_num.top();
17 st_num.pop();
18 st_num.push(V);
19 }
20 void dfs(int k,int p){
21 if ((!ls[k])&&(!rs[k])){
22 f[p][k][((p&(1<<a[k]))>0)]=1;
23 return;
24 }
25 dfs(ls[k],p);
26 dfs(rs[k],p);
27 int s=(1LL*f[p][ls[k]][0]*f[p][rs[k]][1]+1LL*f[p][ls[k]][1]*f[p][rs[k]][0])%mod;
28 if (a[k]==0){
29 f[p][k][0]=(1LL*f[p][ls[k]][0]*f[p][rs[k]][0]+s)%mod;
30 f[p][k][1]=1LL*f[p][ls[k]][1]*f[p][rs[k]][1]%mod;
31 }
32 if (a[k]==1){
33 f[p][k][0]=1LL*f[p][ls[k]][0]*f[p][rs[k]][0]%mod;
34 f[p][k][1]=(1LL*f[p][ls[k]][1]*f[p][rs[k]][1]+s)%mod;
35 }
36 if (a[k]==2){
37 f[p][k][0]=(2LL*f[p][ls[k]][0]*f[p][rs[k]][0]+s)%mod;
38 f[p][k][1]=(2LL*f[p][ls[k]][1]*f[p][rs[k]][1]+s)%mod;
39 }
40 }
41 int main(){
42 scanf("%d%d",&n,&m);
43 for(int i=0;i<m;i++)
44 for(int j=1;j<=n;j++)scanf("%d",&b[i][j]);
45 scanf("%s",s);
46 int l=strlen(s),flag=0;
47 for(int i=0;i<l;i++)
48 if (('0'<=s[i])&&(s[i]<='9')){
49 a[++V]=s[i]-'0';
50 st_num.push(V);
51 if ((!st_op.empty())&&(st_op.top()!=-1))merge();
52 }
53 else{
54 if (s[i]=='(')st_op.push(-1);
55 if (s[i]=='<')st_op.push(0);
56 if (s[i]=='>')st_op.push(1);
57 if (s[i]=='?'){
58 st_op.push(2);
59 flag=1;
60 }
61 if (s[i]==')'){
62 st_op.pop();
63 if ((!st_op.empty())&&(st_op.top()!=-1))merge();
64 }
65 }
66 while (!st_op.empty())merge();
67 for(int i=0;i<(1<<m);i++)dfs(V,i);
68 for(int i=1;i<=n;i++){
69 for(int j=0;j<m;j++)id[j]=j;
70 p=i;
71 sort(id,id+m,cmp);
72 id[m]=m;
73 int s=0;
74 for(int j=0;j<m;j++){
75 s|=(1<<id[j]);
76 ans=(ans+1LL*f[s][V][1]*(b[id[j]][i]-b[id[j+1]][i]))%mod;
77 }
78 }
79 printf("%d",ans);
80 return 0;
81 }

[loj3463]表达式求值的更多相关文章

  1. 表达式求值(noip2015等价表达式)

    题目大意 给一个含字母a的表达式,求n个选项中表达式跟一开始那个等价的有哪些 做法 模拟一个多项式显然难以实现那么我们高兴的找一些素数代入表达式,再随便找一个素数做模表达式求值优先级表 - ( ) + ...

  2. 用Python3实现表达式求值

    一.题目描述 请用 python3 编写一个计算器的控制台程序,支持加减乘除.乘方.括号.小数点,运算符优先级为括号>乘方>乘除>加减,同级别运算按照从左向右的顺序计算. 二.输入描 ...

  3. 数据结构算法C语言实现(八)--- 3.2栈的应用举例:迷宫求解与表达式求值

    一.简介 迷宫求解:类似图的DFS.具体的算法思路可以参考书上的50.51页,不过书上只说了粗略的算法,实现起来还是有很多细节需要注意.大多数只是给了个抽象的名字,甚至参数类型,返回值也没说的很清楚, ...

  4. nyoj305_表达式求值

    表达式求值 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 Dr.Kong设计的机器人卡多掌握了加减法运算以后,最近又学会了一些简单的函数求值,比如,它知道函数min ...

  5. 利用栈实现算术表达式求值(Java语言描述)

    利用栈实现算术表达式求值(Java语言描述) 算术表达式求值是栈的典型应用,自己写栈,实现Java栈算术表达式求值,涉及栈,编译原理方面的知识.声明:部分代码参考自茫茫大海的专栏. 链栈的实现: pa ...

  6. 数据结构--栈的应用(表达式求值 nyoj 35)

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=35 题目: 表达式求值 时间限制:3000 ms | 内存限制:65535 KB描述 AC ...

  7. NOIP2013普及组 T2 表达式求值

    OJ地址:洛谷P1981 CODEVS 3292 正常写法是用栈 #include<iostream> #include<algorithm> #include<cmat ...

  8. HNU 12817 Shipura(表达式求值)

    题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12817 解题报告:定义两种运算符号,一种是>>,就 ...

  9. NOIP201302表达式求值

    NOIP201302表达式求值 题目描述 Description 给定一个只包含加法和乘法的算术表达式,请你编程计算表达式的值. 输入描述 Input Description 输入仅有一行,为需要你计 ...

随机推荐

  1. 10.3 Nginx

    Nginx介绍 engine X,2002年开发,分为社区版和商业版(nginx plus) 2019年 f5 Networks 6.7亿美元收购nginx Nginx 免费 开源 高性能 http ...

  2. cmd下载慢

    是网络的原因,加一个镜像服务器 pip install *** -i https://pypi.tuna.tsinghua.edu.cn/simple

  3. javascriptRemke之深入迭代

    javascriptRemke之深入迭代 前言:"迭代"意为按照顺序反复多次执行一段程序,ECMAscript6中新增了两个高级特性:迭代器与生成器,使用这两个特性能更高效地实现迭 ...

  4. 题解 2020.10.24 考试 T3 数列

    题目传送门 题目大意 给出一个数 \(n\),你要构造一个数列,满足里面每个数都是 \(n\) 的因子,且每一个数与前面不互质的个数不超过 \(1\).问有多少种合法方案. 保证 \(n\) 的不同质 ...

  5. bzoj1407,洛谷2421 NOI2002荒岛野人

    题目大意: 克里特岛以野人群居而著称.岛上有排列成环行的M个山洞.这些山洞顺时针编号为1,2,-,M.岛上住着N个野人,一开始依次住在山洞C1,C2,-,CN中,以后每年,第i个野人会沿顺时针向前走P ...

  6. SpringBoot-集成SpringSecurity

    在 Web 开发中,安全一直是非常重要的一个方面. 安全虽然属于应用的非功能性需求,但是从应用开发的第一天就应该把安全相关的因素考虑进来,并在整个应用的开发过程中. Spring Security官网 ...

  7. NX Open 图层说

    我也是偶然发现的,在一次调试下,竟然会报警. 所以我写了测试代码,进行测试:结果如下 纳尼???还有271层?还能设置大于256层?NX open可以的.

  8. 【UE4 C++ 基础知识】<11>资源的同步加载与异步加载

    同步加载 同步加载会造成进程阻塞. FObjectFinder / FClassFinder 在构造函数加载 ConstructorHelpers::FObjectFinder Constructor ...

  9. Spring Cloud Alibaba Nacos Config 的使用

    Spring Cloud Alibaba Nacos Config 的使用 一.需求 二.实现功能 1.加载 product-provider-dev.yaml 配置文件 2.实现配置的自动刷新 3. ...

  10. eureka服务端和客户端的简单搭建

    本篇博客简单记录一下,eureka 服务端和 客户端的简单搭建. 目标: 1.完成单机 eureka server 和 eureka client 的搭建. 2.完成eureka server 的添加 ...