Fence
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 4705   Accepted: 1489

Description

A team of k (1 <= K <= 100) workers should paint a fence which contains N (1 <= N <= 16 000) planks numbered from 1 to N from left to right. Each worker i (1 <= i <= K) should sit in front of the plank Si and he may paint only a compact interval (this means that the planks from the interval should be consecutive). This interval should contain the Si plank. Also a worker should not paint more than Li planks and for each painted plank he should receive Pi $ (1 <= Pi <= 10 000). A plank should be painted by no more than one worker. All the numbers Si should be distinct. 

Being the team's leader you want to determine for each worker the interval that he should paint, knowing that the total income should be maximal. The total income represents the sum of the workers personal income. 

Write a program that determines the total maximal income obtained by the K workers. 

Input

The input contains: 
Input 

N K 
L1 P1 S1 
L2 P2 S2 
... 
LK PK SK 

Semnification 

N -the number of the planks; K ? the number of the workers 
Li -the maximal number of planks that can be painted by worker i 
Pi -the sum received by worker i for a painted plank 
Si -the plank in front of which sits the worker i 

Output

The output contains a single integer, the total maximal income.

Sample Input

8 4
3 2 2
3 2 3
3 3 5
1 1 7

Sample Output

17

Hint

Explanation of the sample: 

the worker 1 paints the interval [1, 2]; 

the worker 2 paints the interval [3, 4]; 

the worker 3 paints the interval [5, 7]; 

the worker 4 does not paint any plank 
思路:dp+单调队列;
首先我们要对原来的点按顺序排,然后dp[i][j]表示前i个人喷漆到j个位置结束的最大值,那么转移方程是dp[i][j] = max(dp[i-1][j],dp[i-1][j-s]+s*ans.p);这样n^3肯定不行,然后方程可写为dp[i-1][k]+(j-k)*ans.p=dp[i-1][k]-k*ans.p+j*ans.p,因为第二层循环中的j是不变的,(max(0,j-ans.l)<=k<ans.s),那么ans.l定,ans.s定,当j增大时区间范围减小,然后单调队列维护下最大值即可。复杂度O(n*m);
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<stack>
8 using namespace std;
9 typedef long long LL;
10 typedef struct node
11 {
12 int cost;
13 int id;
14 bool operator<(const node &cx)const
15 {
16 if(cx.cost == cost)return cx.id < id;
17 else return cx.cost>cost;
18 }
19 } ak;
20 typedef struct pp
21 {
22 int l,p,s;
23 } ss;
24 bool cmp(pp p,pp q)
25 {
26 return p.s<q.s;
27 }
28 priority_queue<ak>que;
29 ss ans[105];
30 int dp[105][16005];
31 ak quq[2*16005];
32 int main(void)
33 {
34 int n,m;
35 while(scanf("%d %d",&n,&m)!=EOF)
36 {
37 int j;
38 int i;
39 int maxx = 0;
40 for(i = 1; i <= m; i++)
41 scanf("%d %d %d",&ans[i].l,&ans[i].p,&ans[i].s);
42 sort(ans+1,ans+1+m,cmp);
43 memset(dp,0,sizeof(dp));
44 for(i = 1; i <= m; i++)
45 {
46 int head = 16001;
47 int rail = 16000;
48 for(j = 0; j < ans[i].s; j++)
49 {
50 dp[i][j] = dp[i-1][j];
51 ak acc;
52 acc.cost = dp[i-1][j]-j*ans[i].p;
53 acc.id = j;
54 if(head>rail)
55 quq[--head] = acc;
56 else
57 {
58 ak cpp = quq[rail];
59 while(cpp.cost < acc.cost)
60 {
61 rail--;
62 if(rail<head)
63 {
64 break;
65 }
66 cpp = quq[rail];
67 }
68 quq[++rail] = acc;
69 }
70 maxx = max(maxx,dp[i][j]);
71 }
72 for(j = ans[i].s; j <= min(n,ans[i].l+ans[i].s-1); j++)
73 {
74 dp[i][j] = max(dp[i-1][j],dp[i][j]);
75 int minn = max(0,j-ans[i].l);
76 while(head<=rail)
77 {
78 ak acc = quq[head];
79 if(acc.id < minn)
80 {
81 head++;
82 }
83 else
84 {
85 dp[i][j] = max(dp[i][j],acc.cost+j*ans[i].p);
86 break;
87 }
88 }
89 maxx = max(maxx,dp[i][j]);
90 }
91 for(j = min(n,ans[i].l+ans[i].s-1)+1; j <= n; j++)
92 {
93 dp[i][j] = dp[i-1][j];
94 maxx = max(maxx,dp[i][j]);
95 }}
96 printf("%d\n",maxx);
97 }
98 return 0;}

Fence(poj1821)的更多相关文章

  1. DP重开

    颓了差不多一周后,决定重开DP 这一周,怎么说,学了学trie树,学了学二叉堆,又学了学树状数组,差不多就这样,然后和cdc一番交流后发现,学这么多有用吗?noip的范围不就是提高篇向外扩展一下,现在 ...

  2. 【学习笔记】动态规划—各种 DP 优化

    [学习笔记]动态规划-各种 DP 优化 [大前言] 个人认为贪心,\(dp\) 是最难的,每次遇到题完全不知道该怎么办,看了题解后又瞬间恍然大悟(TAT).这篇文章也是花了我差不多一个月时间才全部完成 ...

  3. [POJ1821]Fence(单调队列优化dp)

    [poj1821]Fence 有 N 块木板从左至右排成一行,有 M 个工匠对这些木板进行粉刷,每块木板至多被粉刷一次.第 i 个工匠要么不粉刷,要么粉刷包含木板 Si 的,长度不超过Li 的连续一段 ...

  4. POJ1821 Fence

    题意 Language:Default Fence Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 6478 Accepted: ...

  5. poj1821 Fence【队列优化线性DP】

    Fence Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6122   Accepted: 1972 Description ...

  6. POJ1821 Fence 题解报告

    传送门 1 题目描述 A team of $k (1 <= K <= 100) $workers should paint a fence which contains \(N (1 &l ...

  7. poj1821 Fence(单调队列优化dp)

    地址 一排N个木板,M个工匠站在不同位置$S_i$,每个人可以粉刷覆盖他位置的.最长长度为$L_i$木板段,每刷一个有$P_i$报酬.同一木板只刷一次.求最大报酬. 根据每个人的位置dp,设$f[i] ...

  8. $Poj1821\ Fence\ $单调队列优化$DP$

    Poj   Acwing Description 有N块木板等待被M个工匠粉刷,每块木板至多被刷一次.第i个工匠要么不粉刷,要么粉刷包含木块Si的,长度不超过Li的连续的一段木板,每粉刷一块可以得到P ...

  9. poj1821 Fence(dp,单调队列优化)

    题意: 由k(1 <= K <= 100)个工人组成的团队应油漆围墙,其中包含N(1 <= N <= 16 000)个从左到右从1到N编号的木板.每个工人i(1 <= i ...

随机推荐

  1. php操作mongodb手册地址

    php操作mongodb手册地址: http://php.net/manual/zh/class.mongocollection.php

  2. 使用flock命令查看nas存储是否支持文件锁

    上锁 文件锁有两种 shared lock 共享锁 exclusive lock 排他锁 当文件被上了共享锁之后,其他进程可以继续为此文件加共享锁,但此文件不能被加排他锁,此文件会有一个共享锁计数,加 ...

  3. 静态库动态库的编译、链接, binutils工具集, 代码段\数据段\bss段解释

    #1. 如何使用静态库 制作静态库 (1)gcc *.c -c -I../include得到o文件 (2) ar rcs libMyTest.a *.o 将所有.o文件打包为静态库,r将文件插入静态库 ...

  4. eclipse上点击open Perspective找不到java EE的解决办法

    原因:没有安装java ee等插件 Help--->Install New software---->work  with中选择All Available  Sites---->  ...

  5. 【leetocde】922. Sort Array By Parity II

    Given an array of integers nums, half of the integers in nums are odd, and the other half are even.  ...

  6. 虚机扩大容量与vm减少所占容量

    Linux的虚拟机碎片整理 sudo dd if=/dev/zero of=/free bs=1M sudo rm -f /free 镜像压缩 移动镜像 VBoxManage internalcomm ...

  7. spring mvc idea创建

    创建项目 创建项目 --> Spring --> Spring MVC --> 下面选择Download,会显示Spring MVC-5版本 如果是首次使用IDEA,因为没有配置ma ...

  8. hadoop基本命令(转)

    在这篇文章中,我们默认认为Hadoop环境已经由运维人员配置好直接可以使用. 假设Hadoop的安装目录HADOOP_HOME为/home/admin/hadoop. 启动与关闭 启动HADOOP 进 ...

  9. maven项目install时忽略执行test

    1.在项目所在文件夹根目录使用maven命令打包时: <!-- 不执行单元测试,也不编译测试类 --> mvn install -Dmaven.test.skip=true 或 <! ...

  10. 拷贝txt文本中的某行的数据到excel中

    package com.hope.day01;import java.io.*;import java.util.ArrayList;public class HelloWorld {    publ ...