作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/longest-palindromic-subsequence/description/

题目描述

Given a string s, find the longest palindromic subsequence’s length in s. You may assume that the maximum length of s is 1000.

Example 1:

Input:

"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".

Example 2:

Input:

"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".

题目大意

找出一个字符串中最长的回文序列的长度。注意序列可以是不连续的,而子字符串是连续的。

解题思路

做完昨天的每日一题 446. 等差数列划分 II - 子序列 之后,相信大家对于子序列问题的套路已经更加了解了。子序列问题不能用滑动窗口了,可以用动态规划来解决。子序列问题的经典题目就是 300. 最长递增子序列,务必掌握。

先从整体思路说起。

子序列问题,由于是数组中的非连续的一个序列,使用动态规划求解时,避免不了二重循环:第一重循环是求解动态规划的每一个状态

d

p

[

i

]

,

(

0

<

=

i

<

=

N

)

dp[i], (0 <= i <= N)

dp[i],(0<=i<=N) ,第二重循环是向前寻找上一个子序列的结尾

j

,

(

0

<

=

j

<

i

)

j ,(0 <= j < i)

j,(0<=j<i)$ 来和

i

i

i 一起构成满足题意的新的子序列。

  • 对于「最长递增子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 的要求是

    n

    u

    m

    s

    [

    i

    ]

    >

    n

    u

    m

    s

    [

    j

    ]

    nums[i] > nums[j]

    nums[i]>nums[j],即递增;

  • 对于「能构成等差数列的子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 的要求是

    n

    u

    m

    [

    i

    ]

    num[i]

    num[i] 可以在

    n

    u

    m

    s

    [

    j

    ]

    nums[j]

    nums[j] 的基础上构成等差数列。

  • 对于「最长回文子序列」问题,我们对

    i

    ,

    j

    i, j

    i,j 本身的取值没有要求,但是希望能够成最长的回文子串。

在动态规划问题中,我们找到一个符合条件的

j

j

j ,然后就可以通过状态转移方程由

d

p

[

j

]

dp[j]

dp[j] 推导出

d

p

[

i

]

dp[i]

dp[i] 。

然后,我理一下本题的解法。

当已知一个序列是回文时,在其首尾添加元素后的序列存在两种情况:

  1. 首尾元素相等,则最长回文的长度 + 2;
  2. 首尾元素不相等,则最长回文序列长度为 仅添加首元素时的最长回文长度 与 仅添加尾元素时的最长回文长度 的最大值。

状态定义

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 表示

s

[

i

j

]

s[i…j]

s[i…j] 中的最长回文序列长度。

状态转移方程

  1. i

    >

    j

    i > j

    i>j,

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    0

    dp[i][j] = 0

    dp[i][j]=0;

  2. i

    =

    =

    j

    i == j

    i==j,

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    1

    dp[i][j] = 1

    dp[i][j]=1;

  3. i

    <

    j

    i < j

    i<j 且

    s

    [

    i

    ]

    =

    =

    s

    [

    j

    ]

    s[i] == s[j]

    s[i]==s[j],

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    d

    p

    [

    i

    +

    1

    ]

    [

    j

    1

    ]

    +

    2

    dp[i][j] = dp[i + 1][j - 1] + 2

    dp[i][j]=dp[i+1][j−1]+2;

  4. i

    <

    j

    i < j

    i<j 且

    s

    [

    i

    ]

    =

    s

    [

    j

    ]

    s[i]!= s[j]

    s[i]!=s[j],

    d

    p

    [

    i

    ]

    [

    j

    ]

    =

    m

    a

    x

    (

    d

    p

    [

    i

    +

    1

    ]

    [

    j

    ]

    d

    p

    [

    i

    ]

    [

    j

    1

    ]

    )

    dp[i][j] = max(dp[i + 1][j],dp[i][j - 1])

    dp[i][j]=max(dp[i+1][j],dp[i][j−1]);

遍历顺序
从状态转移方程可以看出,计算

d

p

[

i

]

[

j

]

dp[i][j]

dp[i][j] 时需要用到

d

p

[

i

+

1

]

[

j

1

]

dp[i+1][j - 1]

dp[i+1][j−1] 和

d

p

[

i

+

1

]

[

j

]

dp[i + 1][j]

dp[i+1][j],所以对于

i

i

i 的遍历应该从后向前;对于

j

j

j 的遍历应该从前向后。

返回结果
最后返回

d

p

[

0

]

[

s

.

l

e

n

g

t

h

(

)

1

]

dp[0][s.length() - 1]

dp[0][s.length()−1]。

代码

提供了三种语言的代码。

java 代码

class Solution {
public int longestPalindromeSubseq(String s) {
int size = s.length();
int[][] dp = new int[size][size];
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s.charAt(i) == s.charAt(j)){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
}

C++代码:

class Solution {
public:
int longestPalindromeSubseq(string s) {
int size = s.size();
vector<vector<int>> dp(size, vector<int>(size, 0));
for(int i = size - 1; i >= 0; i--){
dp[i][i] = 1;
for(int j = i + 1; j < size; j++){
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1] + 2;
}else{
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][size - 1];
}
};

python 代码:

class Solution:
def longestPalindromeSubseq(self, s):
n = len(s)
dp = [[0] * n for _ in range(n)]
for i in range(n - 1, -1, -1):
dp[i][i] = 1
for j in range(i + 1, n):
if s[i] == s[j]:
dp[i][j] = dp[i + 1][j - 1] + 2
else:
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1])
return dp[0][n - 1]
  • 时间复杂度:

    O

    (

    N

    2

    )

    O(N^2)

    O(N2)

  • 空间复杂度:

    O

    (

    N

    2

    )

    O(N^2)

    O(N2)

刷题心得

子序列的动态规划解法:两重循环。其实就看对于每个

i

i

i,当找到满足题目要求的

j

j

j 的时候,状态转移方程怎么变化。

参考:http://blog.csdn.net/camellhf/article/details/70337501

日期

2018 年 3 月 15 日 --雾霾消散,春光明媚
2021 年 8 月 12 日——对面在装修,很吵

【LeetCode】516. Longest Palindromic Subsequence 最长回文子序列的更多相关文章

  1. [LeetCode] 516. Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  2. 516 Longest Palindromic Subsequence 最长回文子序列

    给定一个字符串s,找到其中最长的回文子序列.可以假设s的最大长度为1000. 详见:https://leetcode.com/problems/longest-palindromic-subseque ...

  3. [LeetCode] Longest Palindromic Subsequence 最长回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

  4. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  5. [LeetCode] 5. Longest Palindromic Substring 最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  6. [leetcode]5. Longest Palindromic Substring最长回文子串

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  7. LN : leetcode 516 Longest Palindromic Subsequence

    lc 516 Longest Palindromic Subsequence 516 Longest Palindromic Subsequence Given a string s, find th ...

  8. 516. Longest Palindromic Subsequence最长的不连续回文串的长度

    [抄题]: Given a string s, find the longest palindromic subsequence's length in s. You may assume that ...

  9. [leetcode]516. Longest Palindromic Subsequence最大回文子序列

    Given a string s, find the longest palindromic subsequence's length in s. You may assume that the ma ...

随机推荐

  1. Excel-vlookup(查找值,区域范围,列序号,0)如何固定住列序列号,这样即使区域范围变动也不受影响

    突然,发现VLOOKUP的列序列号并不会随着区域范围的改变而自动调节改变,只是傻瓜的一个数,导致V错值.所有,就想实现随表格自动变化的列序号. 方法一:在列序号那里,用函数得出永远想要的那个列在区域范 ...

  2. 修改Ubuntu中locale转中文为英文

    修改Ubuntu 的命令行为英文版  编辑 /etc/default/locale 文件 原来的配置为: LANG="zh_CN.UTF-8″ LANGUAGE="zh_CN:&q ...

  3. 前后端分离进阶一:使用ElementUI+前端分页

    前两篇入门:前后端分离初体验一:前端环境搭建 前后端分离初体验二:后端环境搭建+数据交互 参考:https://www.bilibili.com/video/BV137411B7vB B站UP:楠哥教 ...

  4. Linux 参数代换 命令 xargs

    xargs 命令也是管道命令中的一员.xargs命令的功能简单来说就是参数代换.那么什么叫做参数代换,这里首先要了解管道的概念.在 linux管道 命令一节中我们详细介绍了管道命令的概念.这里我们只是 ...

  5. Windows系统安装MySQL详细教程和安装过程中问题汇总(命令安装),更新时间2021-12-8

    安装包下载 下载地址:https://dev.mysql.com/downloads/mysql/ 点击下载之后,可以选择注册Oracle账号,也可以跳过直接下载. 下载完成后,选择一个磁盘内放置并解 ...

  6. 集合类——集合输出、栈和队列及Collections集合

    1.集合输出 在之前我们利用了toString()及get()方法对集合进行了输出,其实那都不是集合的标准输出,集合输出有四种方式:Iterator.ListIterator.Enumeration. ...

  7. redis安装与简单实用

    1.在Linux上redis的安装时十分简单的: 第一步:wget http://download.redis.io/releases/redis-2.8.12.tar.gz 解压: tar zxvf ...

  8. OC-代理,字符串

    总结 编号 标题 内容 一 protocol protocol 基本概念/语法格式/protocol和继承区别/使用注意/基协议/@required和@optional关键字/类型限制 二 代理设计模 ...

  9. velocity示例

    创建maven项目 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns ...

  10. ArrayList删除特定元素的方法

    最朴实的方法,使用下标的方式: ArrayList<String> al = new ArrayList<String>(); al.add("a"); a ...