题目传送门

Description

给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数。答案对 $ 10 ^ 9 + 7 $ 取模。

对于一个长度为 $ n $ 的排列 $ p $,其逆序对数即满足 $ i < j $ 且 $ p_i > p_j $ 的二元组 $ (i, j) $ 的数量。

一行两个整数 $ n, k $。

一行,表示答案。

对于 $ 20% $ 的数据,$ n, k \leq 20 $;

对于 $ 40% $ 的数据,$ n, k \leq 100 $;

对于 $ 60% $ 的数据,$ n, k \leq 5000 $;

对于 $ 100% $ 的数据,$ 1 \leq n, k \leq 100000, 1 \leq k \leq \binom{n}{2} $。

Solution

可以想到,对于一个排列 \(p\) ,假设 \(s_i\) 表示以 \(i\) 为右端点的逆序对个数,那么可以看出一个 \(s_{1,2,...,n}\) 对应一个唯一的 \(p\) ,而一个 \(s_{1,2,...,n}\) 合法当且仅当 \(\forall i,s_i\le i-1\)。

可以想到我们可以容斥,即枚举哪些点 \(s_i\) 越界了。那么,我们也就只需要求出

\[\prod_{i=1}^{n}(1-x^i)
\]

的前面 \(k\) 项。

这个时候我们就有两种办法,一种是用多项式,取 \(\ln\) ,然后用 \(\ln(1-x)=\sum_{j=1}^{\infty} -\frac{x^j}{j}\) \(\Theta(k\log k)\) 直接多项式 \(\ln,\exp\) 算出来,考场上我就写的这个,不过原题要写任意模数 NTT,估计不是很好写,而且常数很大,可以拿头过。

还有另外一种 \(\Theta(k\sqrt k)\) 做法。你发现选出一个 \(\{1,2,...,n\}\) 的集合还有另外一种选法,即假设你现在有一个递减序列,你每次有两种选择:

  1. 整体加 \(1\)

  2. 整体加 \(1\) 并在后面增加一个 \(1\)

那么,我们就可以进行 dp 了,因为考虑到我们最多使用 \(\sqrt k\) 次操作 \(2\),所以,我们可以设 \(f_{i,j}\) 表示在经过 \(i\) 此操作 \(2\) 后数字总和为 \(j\) 的方案数。

可以得到转移式:

\[f_{i,j}=f_{i,j-i}+f_{i-1,j-i}-f_{i-1,j-n-1}
\]

Code

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXN 200005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
template <typename T> inline void chkmax (T &a,T b){a = max (a,b);} int n,k,upp = 2e5,fac[MAXN],ifac[MAXN],f[505][MAXN];
int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
int qkpow (int a,int b){
int res = 1;for (;b;b >>= 1,a = mul (a,a)) if (b & 1) res = mul (res,a);
return res;
}
void Sub (int &a,int b){a = dec (a,b);}
void Add (int &a,int b){a = add (a,b);}
int binom (int a,int b){return a >= b ? mul (fac[a],mul (ifac[b],ifac[a - b])) : 0;} int F[MAXN]; signed main(){
read (n,k);int up = 500;
fac[0] = 1;for (Int i = 1;i <= upp;++ i) fac[i] = mul (fac[i - 1],i);
ifac[upp] = qkpow (fac[upp],mod - 2);for (Int i = upp;i;-- i) ifac[i - 1] = mul (ifac[i],i);
f[0][0] = 1;
for (Int i = 1;i <= up;++ i)
for (Int j = 0;j <= k;++ j){
if (j >= i) Add (f[i][j],add (f[i][j - i],f[i - 1][j - i]));
if (j >= n + 1) Sub (f[i][j],f[i - 1][j - n - 1]);
}
for (Int S = 0;S <= k;++ S)
for (Int i = 0;i <= up;++ i)
if (i & 1) Sub (F[S],f[i][S]);
else Add (F[S],f[i][S]);
int ans = 0;
for (Int S = 0;S <= k;++ S) Add (ans,mul (F[S],binom (k - S + n - 1,n - 1)));
write (ans),putchar ('\n');
return 0;
}

题解 「2017 山东一轮集训 Day7」逆序对的更多相关文章

  1. 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP

    [LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...

  2. loj #6077. 「2017 山东一轮集训 Day7」逆序对

    #6077. 「2017 山东一轮集训 Day7」逆序对   题目描述 给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数.答案对 109+7 10 ^ 9 ...

  3. 「2017 山东一轮集训 Day7」逆序对

    题解: 满满的套路题.. 首先显然从大到小枚举 然后每次生成的逆序对是1----(i-1)的 这样做dp是nk的 复杂度太高了 那我们转化一下问题 变成sigma(ai   (ai<i)  )= ...

  4. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  5. loj6077. 「2017 山东一轮集训 Day7」逆序对

    题目描述: loj 题解: 容斥+生成函数. 考虑加入的第$i$个元素对结果的贡献是$[0,i-1]$,我们可以列出生成函数. 长这样:$(1)*(1+x)*(1+x+x^2)*--*(1+x+x^2 ...

  6. LOJ #6119. 「2017 山东二轮集训 Day7」国王

    Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...

  7. loj6119 「2017 山东二轮集训 Day7」国王

    题目描述 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当这条路径上的工 ...

  8. loj #6079. 「2017 山东一轮集训 Day7」养猫【最大费用最大流】

    首先假设全睡觉,然后用费用流考虑平衡要求建立网络流 把1~n的点看作是i-k+1~k这一段的和,连接(i,i+k,1,e[i]-s[i]),表示把i改成吃饭,能对i~i+k-1这一段的点产生影响:然后 ...

  9. LOJ6079「2017 山东一轮集训 Day7」养猫

    养ImmortalCO k可重区间问题 的增强版:有上下界! 直接都选择s[i],然后再把一些调整到e[i] 考虑通过最大流的“最大”,使得至少每k个有me个e, 通过最大流的“上界”,限制每k个最多 ...

随机推荐

  1. CSS3 animaion 和 transition 比较

    animation是CSS3的动画属性,可以设置以下六种属性. transition是CSS3的过度属性,可以设置以下四种属性. 从属性上分析,animation可以设定循环次数. 其次,两者的触发条 ...

  2. Shell脚本基础及基本常用命令

    1.概述 脚本语言(shell.python):解释性语言,用解释器解释 运行效率低 | c.java:描述性语言,运行效率高 以.sh结尾会有高亮显示 执行: sh hello.sh 或者 chmo ...

  3. Git入门配置

    1.账户注册: 无论是GitHub还是码云(下称Gitee),要使用他们,我们都需要先注册账户,已有账户的可以跳过此步骤. Gitee GitHub 2.创建仓库: a.创建远程仓库 登入Gitee后 ...

  4. SpringBoot2.x+mybatis plus3.x集成Activit7版本

    最近在写一个开源项目ruoyi-vue-pro,暂时负责Activiti7工作流的搭建,接这个任务一个原因,是比较好奇Activiti7版本与先前的5.6版本究竟有什么区别,因为先前在工作当中,最开始 ...

  5. Windows系统定时备份MySQL数据库

    当一个网站投入使用时,定期备份数据库是必要的事.那么,在Windows系统上,我们该如何做呢? 如下语句可以实现备份及还原MySQL数据库: 备份MySQL数据库 mysqldump -uroot - ...

  6. HDD成都站:HMS Core 6.0带来新可能 多元服务驱动产品商业成功

    9月10日,由华为开发者联盟主办的HDD(Huawei Developer Day)于成都举行.活动中,华为HMS Core各领域专家重点解读了HMS Core 6.0为开发者带来的多项全新能力,及生 ...

  7. noip模拟21

    开题发现这场考过,定睛一看,发现是省选前最后一场,没改过呀--但是还是讲武德的赛时没提交 A. Median 神奇之处在于 \(1e7\) 个质数居然能线性筛出来~ 那么 \(S2\) 可以直接筛出来 ...

  8. Mysql常用sql语句(15)- cross join 交叉连接

    测试必备的Mysql常用sql语句 https://www.cnblogs.com/poloyy/category/1683347.html 前言 交叉连接就是求多表之间的笛卡尔积 讲道理..这个我都 ...

  9. QT之静态函数发送信号

    一.简介 由于博主本人是初学者对QT的机制不了解,所以遇到了一个比较大的坑,特此记录一下.我遇到的问题是无法在静态函数中向另外一个类发送信号.解决办法:先将信号发送给同类中的普通函数,然后在从普通函数 ...

  10. Element UI:DatePicker的终止日期与起始日期关联

    Template // 起始日期 <el-date-picker v-model="queryParams.startTime" :picker-options=" ...