keras.layers.Conv2D( ) 函数参数

    def __init__(self, filters,
kernel_size,
strides=(1, 1),
padding='valid',
data_format=None,
dilation_rate=(1, 1),
activation=None,
use_bias=True,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
kernel_regularizer=None,
bias_regularizer=None,
activity_regularizer=None,
kernel_constraint=None,
bias_constraint=None,
**kwargs):

参数:

filters 卷积核个数的变化,filters 影响的是最后输入结果的的第三个维度的变化,例如,输入的维度是 (600, 600, 3), filters 的个数是 64,转变后的维度是 (600, 600, 64)

>>> from keras.layers import (Input, Reshape)
>>> input = Input(shape=(600, 600, 3))
>>> x = Conv2D(64, (1, 1), strides=(1, 1), name='conv1')(input)
>>> x
<tf.Tensor 'conv1_1/BiasAdd:0' shape=(?, 600, 600, 64) dtype=float32>

kernel_size 参数 表示卷积核的大小,可以直接写一个数,影响的是输出结果前两个数据的维度,例如,(600, 600, 3)=> (599, 599, 64)

>>> from keras.layers import (Input, Conv2D)
>>> input = Input(shape=(600, 600, 3))
>>> Conv2D(64, (2, 2), strides=(1, 1), name='conv1')(input)
<tf.Tensor 'conv1/BiasAdd:0' shape=(?, 599, 599, 64) dtype=float32>

直接写 2 也是可以的

>>> from keras.layers import (Input, Conv2D)
>>> input = Input(shape=(600, 600, 3))
>>> Conv2D(64, 2, strides=(1, 1), name='conv1')(input)
<tf.Tensor 'conv1_2/BiasAdd:0' shape=(?, 599, 599, 64) dtype=float32>

strides  步长 同样会影响输出的前两个维度,例如,(600, 600, 3)=> (300, 300, 64),值得注意的是,括号里的数据可以不一致,分别控制横坐标和纵坐标,这里步长的计算公式为:

>>> from keras.layers import (Input, Conv2D)
>>> input = Input(shape=(600, 600, 3))
>>> Conv2D(64, 1, strides=(2, 2), name='conv1')(input)
<tf.Tensor 'conv1_4/BiasAdd:0' shape=(?, 300, 300, 64) dtype=float32>

padding 是否对周围进行填充,“same” 即使通过kernel_size 缩小了维度,但是四周会填充 0,保持原先的维度;“valid”表示存储不为0的有效信息。多个对比效果如下:

>>> Conv2D(64, 1, strides=(2, 2), padding="same", name='conv1')(input)
<tf.Tensor 'conv1_6/BiasAdd:0' shape=(?, 300, 300, 64) dtype=float32>
>>> Conv2D(64, 3, strides=(2, 2), padding="same", name='conv1')(input)
<tf.Tensor 'conv1_7/BiasAdd:0' shape=(?, 300, 300, 64) dtype=float32>
>>> Conv2D(64, 3, strides=(1, 1), padding="same", name='conv1')(input)
<tf.Tensor 'conv1_8/BiasAdd:0' shape=(?, 600, 600, 64) dtype=float32>
>>> Conv2D(64, 3, strides=(1, 1), padding="valid", name='conv1')(input)
<tf.Tensor 'conv1_9/BiasAdd:0' shape=(?, 598, 598, 64) dtype=float32>

通过这种最简单的方式,可以观察 ResNet50 的组成结构

Conv Block 的架构:

def conv_block(input_tensor, kernel_size, filters, stage, block, strides):

    filters1, filters2, filters3 = filters  # filters1 64, filters3 256  将数值传入到filters。。。中
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(name=bn_name_base + '2a')(x)
x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x)
x = BatchNormalization(name=bn_name_base + '2b')(x)
x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x)
x = BatchNormalization(name=bn_name_base + '2c')(x) shortcut = Conv2D(filters3, (1, 1), strides=strides, name=conv_name_base + '1')(input_tensor)
shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut])
x = Activation("relu")(x)
return x

Identity Block 的架构:

def identity_block(input_tensor, kernel_size, filters, stage, block):
filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor)
x = BatchNormalization(name=bn_name_base + '2a')(x)
x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(input_tensor)
x = BatchNormalization(name=bn_name_base + '2b')(x)
x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(input_tensor)
x = BatchNormalization(name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor])
x = Activation('relu')(x)
return x  

附上理论链接 Resnet-50网络结构详解  https://www.cnblogs.com/qianchaomoon/p/12315906.html

TensorFlow之keras.layers.Conv2D( )的更多相关文章

  1. tensorflow和keras混用

    在tensorflow中可以调用keras,有时候让模型的建立更加简单.如下这种是官方写法: import tensorflow as tf from keras import backend as ...

  2. Tensorflow1.4 高级接口使用(estimator, data, keras, layers)

    TensorFlow 高级接口使用简介(estimator, keras, data, experiment) TensorFlow 1.4正式添加了keras和data作为其核心代码(从contri ...

  3. TensorFlow和Keras完成JAFFE人脸表情识别

    cut_save_face.py #!/usr/bin/python # coding:utf8 import cv2 import os import numpy as np import csv ...

  4. 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络暨TensorFlow和Keras交互简介

    零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"in ...

  5. Keras(七)Keras.layers各种层介绍

    一.网络层 keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(Recurrent).嵌入层( Embedding).高级 ...

  6. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  7. TensorFlow——tf.contrib.layers库中的相关API

    在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函 ...

  8. Anaconda安装tensorflow和keras(gpu版,超详细)

    本人配置:window10+GTX 1650+tensorflow-gpu 1.14+keras-gpu 2.2.5+python 3.6,亲测可行 一.Anaconda安装 直接到清华镜像网站下载( ...

  9. 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现

    在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...

随机推荐

  1. BLE链路层空中包格式

    空中包格式 BLE链路层的空中包格式非常简单,它所有的空中包都遵循下图所示的格式: 有上图可见,BLE空中包由4个部分组成,他们分别是: 前导码(Preamble) 访问地址(Access Addre ...

  2. Windows下Nexus 5 改user模式为debug模式

    博客链接:http://blog.csdn.net/qq1084283172/article/details/52337241 在学习Android软件安全的过程中,经常要用到Android的动态调试 ...

  3. Android内核的编译和调试

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/70500488 一.Android内核源码的选择 Android手机设备内核源码的调 ...

  4. 在Android so文件的.init、.init_array上和JNI_OnLoad处下断点

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/54233552 移动端Android安全的发展,催生了各种Android加固的诞生, ...

  5. hdu3182 状态压缩dp

    题意:       一个人做汉堡包,每个汉堡包有自己的花费和价值,某些汉堡包必须是在其他的某些汉堡包已经做好了的前提下才能制作,给你这个人的初始钱数,问最大的价值是多少. 思路:       比较简单 ...

  6. 使用DirectX截屏

    网上有很多关于DirectX截屏的文章,但大都是屏幕截图,很少有窗口截图,本文则两者都涉及到,先讲如何截取整个屏幕,再讲如何截取某个窗口,其实二者的区别不大,只是某个参数的设置不同而已,最后我们还将扩 ...

  7. PowerShell-4.API调用以及DLL调用

    PowerShell可以直接调用API,So...这东西完全和cmd不是一回事了... 调用API的时候几乎和C#一样(注意堆栈平衡): 调用MessageBox: $iii = Add-Type - ...

  8. Windows PE 第十二章 PE变形技术

    PE变形技术 这章东西太多,太细了.这里我只记录了一些重点概念.为后面学习做铺垫. PE变形:改变PE结构之后,PE加载器依然可以成功加载运行我们的程序. 一 变形常用技术: 结构重叠技术.空间调整技 ...

  9. 【译】N 皇后问题 – 构造法原理与证明 时间复杂度O(1)

    [原] E.J.Hoffman; J.C.Loessi; R.C.Moore The Johns Hopkins University Applied Physics Laboratory *[译]* ...

  10. 基于react hooks,antd4 配置生成表单并自动排列

    react后台项目,大多都是表单处理,比如下列4种常见1*n布局 (如果手工编码,大量的Row,Col, Form.Item的嵌套,排列,如果加上联动处理,代码将十分臃肿,不易维护) 一行一列 一行两 ...