需求背景:

项目中需要定期执行任务A来做一些辅助的工作,A的执行需要在超时时间内完成,如果本次执行超时了,那就不对本次的执行结果进行处理(即放弃这次执行)。同时A又依赖B,C两个子任务的执行结果。B, C之间相互独立,可以并行的执行。但无论B,C哪一个执行失败或超时都会导致本次任务执行失败。

Groutine的并发控制:

go中对于groutine的并发控制有三种解决方案:

  1. 通过channel控制。
    1. 父groutine中声明无buffer的chan切片,向要开启的子groutine中传入切片中的一个chan
    2. 子groutine执行完成后向这个chan中写入数据(可以是和父groutine通信的也可以不是)
    3. 父groutine遍历所有chan并执行 <-chan 操作, 利用无buffer的channel只有读写同时准备好才能执行的特性进行控
  2. WaitGroup控制。
    1. 通过sync.Waitgroup, 每开启一个子groutine就执行 wg.Add(1), 子groutine内部执行wg.Done(), 父groutine通过wg.Wait()等待所有子协程
  3. Context控制。
    1. waitGroup和Context应该是Go中较为常用的两种并发控制。相较而言,context对于派生groutine有更强大的控制力,可以控制多级树状分布的groutine。
    2. 当然waitGroup的子groutine也可以再开启新的waitGroup并且等待多个孙groutine, 但是不如context的控制更加方便.

Context:

context包提供了四个方法创建不同类型的context

  1. WitchCancel()
  2. WithDeadline()
  3. WithTimeout()
  4. WithValue()

WithValue()主要用于通过context传递一些上下文消息,不在本次讨论中。WithTimeout和WithDeadLine几乎是一致的。但无论哪种,控制groutine都需要使用ctx.Done()方法. Done() 方法返回一个 "只读"的chan   <-chan struct{}, 需要编写代码监听这个chan,一旦收到它的消息就说明这个context应当结束了,无论是到达了超时时间还是在某个地方主动cancel()了方法。

看看代码:

var ch1 chan int
var ch2 chan int

// 任务A, 通过最外层的for来控制定期执行
func TestMe(t *testing.T) {
ch1 = make(chan int, 0)
ch2 = make(chan int, 0)
count := 0
for {
count ++
ctx, cancel := context.WithTimeout(context.Background(), time.Second * 2)
// 任务A的逻辑部分,开启子任务B, C。
// B,C通过ch1,ch2和A通信。
// 同时监听ctx.Done,如果超时了立即结束本次任务不继续执行
go func(ctx context.Context) {
go g1(ctx, count)
go g2(ctx, count)
v1, v2 := -1, -1
for v1 == -1 || v2 == -1 {
select {
case <- ctx.Done():
cancel()
fmt.Println("父级2超时退出,当前count值为", count, "当前时间:", time.Now())
return
case v1 = <- ch1:
case v2 = <- ch2:
}
}
fmt.Println("正常执行完成退出, 开启下次循环,当前count值为:", count, "当前 v1: ", v1, "当前 v2: ", v2)
}(ctx)
// 任务A监控ctx是否到达timeOUT,timeout就终止本次执行
select {
case <- ctx.Done():
fmt.Println("父级1超时退出,当前count值为", count, "当前时间:", time.Now())
}
time.Sleep(time.Second * 3)
}
}

// 改进后的任务B,即使计算出了结果,也不会再向ch1写数据了,不会造成脏数据
func g1 (ctx context.Context, num int) {
fmt.Println("g1 num", num, "time", time.Now())
select {
case <-ctx.Done():
fmt.Println("子级 g1关闭, 不向channel中写数据")
return
default:
ch1 <- num
}
}

// 改进前的任务C
func g2 (ctx context.Context, num int) {
fmt.Println("g2 num", num, "time", time.Now())
ch2 <- num
}

  

基于上述代码,子任务B, C的处理其实有一次较大的变动。一开始B,C都是类似于子任务C,即g2的这种写法。

这种写法在执行完成后就把自身的结果交给channel, 父groutine通过channel来读取数据,正常情况下也能工作。但异常情况下,如子任务B执行完成,子任务C(即g2)因为网络通信等原因执行了5s(超过context的最大时长), 就会出现比较严重的问题。到达超时时间后,A检测到了超时就自动结束了本次任务,但g2还在执行过程中。g2执行完成后向ch2写数据阻塞了(因为A已关闭,没有读取ch2的groutine)。下一个循环中A再次开启读取ch1与ch2, 实际上读取ch1是当次的结果,ch2是上次任务中g2返回的结果,导致两处依赖的数据源不一致。

模拟上述情况,将g2做了一些改动如下:

// 在第3次任务重等待3s, 使得它超时
func g2 (ctx context.Context, num int) {
if num == 3 {
time.Sleep(time.Second * 3)
}
fmt.Println("g2 num", num, "time", time.Now())
ch2 <- num
}

  

实际上,如果想要通过context控制groutine, 一定要监控Done()方法。如g1所示。相同情况下A超时退出,C仍在执行。C执行完成后先检测Context是否已退出,如果已退出就不再向ch2中写入本次的数据了。(抛砖引玉了,也可能有更好的写法,希望大佬不吝赐教)

将g2改成和g1类似的写法后测试结果如下:

func g2 (ctx context.Context, num int) {
if num == 3 {
time.Sleep(time.Second * 10)
fmt.Println("这次g2 超时,应当g1, g2都不返回")
}
fmt.Println("g2 num", num, "time", time.Now())
select {
case <-ctx.Done():
fmt.Println("子级 g2关闭, 不向channel中写数据")
return
default:
ch2 <- num
}
}

Go 记录一次groutine通信与context控制的更多相关文章

  1. openstack controller ha测试环境搭建记录(十三)——配置cinder(控制节点)

    在任一控制节点创建用户:mysql -u root -pCREATE DATABASE cinder;GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'loc ...

  2. openstack controller ha测试环境搭建记录(十)——配置neutron(控制节点)

    创建neutron用户:mysql -u root -p CREATE DATABASE neutron;GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@ ...

  3. openstack controller ha测试环境搭建记录(八)——配置nova(控制节点)

    在任一节点创建nova用户:mysql -u root -p CREATE DATABASE nova;GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localh ...

  4. 记一次.net core 异步线程设置超时时间

    前言: 刷帖子看到一篇 Go 记录一次groutine通信与context控制 看了一下需求背景,挺有意思的,琢磨了下.net core下的实现 需求背景: 项目中需要定期执行任务A来做一些辅助的工作 ...

  5. 权限管理系统系列之WCF通信

    目录 权限管理系统系列之序言  首先说下题外话,有些园友看了前一篇[权限管理系统系列之序言]博客加了QQ群(186841119),看了我写的权限管理系统的相关文档(主要是介绍已经开发的功能),给出了一 ...

  6. Android USB转串口通信开发基本流程

    好久没有写文章了,年前公司新开了一个项目,是和usb转串口通信相关的,需求是用安卓平板通过usb转接后与好几个外设进行通信.一直忙到近期,才慢慢闲下来,趁着这个周末不忙.记录下usb转串口通信开发的基 ...

  7. 【MPI学习7】MPI并行程序设计模式:MPI的进程组和通信域

    基于都志辉老师MPI编程书中的第15章内容. 通信域是MPI的重要概念:MPI的通信在通信域的控制和维护下进行 → 所有MPI通信任务都直接或间接用到通信域这一参数 → 对通信域的重组和划分可以方便实 ...

  8. 【MPI学习5】MPI并行程序设计模式:组通信MPI程序设计

    相关章节:第13章组通信MPI程序设计. MPI组通信与点到点通信的一个重要区别就是:组通信需要特定组内所有成员参与,而点对点通信只涉及到发送方和接收方. 由于需要组内所有成员参与,因此也是一种比较复 ...

  9. SSL、TLS协议格式、HTTPS通信过程、RDP SSL通信过程

    相关学习资料 http://www.360doc.com/content/10/0602/08/1466362_30787868.shtml http://www.gxu.edu.cn/college ...

随机推荐

  1. 第二十五个知识点:使用特殊的素数定义$GF(p)$和$GF(2^n)$的方法。

    第二十五个知识点:使用特殊的素数定义\(GF(p)\)和\(GF(2^n)\)的方法. 在我们之前看到的博客中,当实现密码学方案时,一个最频繁调用的操作就是模运算.不幸的是,尽管模块化的使用非常广泛, ...

  2. matplotlib 进阶之Constrained Layout Guide

    目录 简单的例子 Colorbars Suptitle Legends Padding and Spacing spacing with colobars rcParams Use with Grid ...

  3. 一文搞懂Google Navigation Component

    一文搞懂Google Navigation Component 应用中的页面跳转是一个常规任务, Google官方提供的解决方案是Android Jetpack的Navigation componen ...

  4. Java程序设计基础笔记 • 【第1章 初识Java】

    全部章节   >>>> 本章目录 1.1 程序的概念及Java语言介绍 1.1.1 生活中的程序 1.1.2 计算机程序 1.1.3 算法和流程图 1.1.4 实践练习 1.2 ...

  5. Oracle之增、删、改、查

    结构化查询语言 (Structured Query Language, SQL) SQL的组成: 数据操作语言(DML) 对数据进行查询.插入.删除和修改等操作,例如SELECT.INSERT.UPD ...

  6. 安装rebar3

    下载编译好的版本 wget https://s3.amazonaws.com/rebar3/rebar3 chmod +x /home/hylink/rebar3 (赋权) ./rebar3 loca ...

  7. C# UTF8的BOM导致XML序列化与反序列化报错:Data at the root level is invalid. Line 1, position 1.

    最近在写一个xml序列化及反序列化实现时碰到个问题,大致类似下面的代码: class Program { static void Main1(string[] args) { var test = n ...

  8. 华为云 Kubernetes 管理员实训 三 课后作业

    Exercise 1 通过Deployment方式,使用redis镜像创建一个pod.通过kubectl获得redis启动日志. Deployment的名称为<hwcka-003-1-你的华为云 ...

  9. Go语言实战爬虫项目

    Go语言爬虫框架之Colly和Goquery Python爬虫框架比较多有requests.urllib, pyquery,scrapy等,解析库有BeautifulSoup.pyquery.Scra ...

  10. 达索CATIA许可证(License)管理使用和优化

    现下主流的V6版本CATIA,是由达索公司提供授权的浮动型License,其客户端通过企业内网从许可证服务器获得许可证,最少要有一个服务器端DS License Server提供一定数量的Licens ...