\(\mathcal{Description}\)

  Link.

  给定一棵 \(n\) 个结点的树,每次操作选择三个结点 \(a,b,c\),满足 \((a,b),(b,c)\in E\),并令 \(a\) 的所有邻接点(包括 \(b\))与 \(c\) 邻接且不再与 \(a\) 邻接;再令 \(a\) 与 \(c\) 邻接。求至少几次操作使树变为菊花图。

  \(n\le2\times10^5\)。

  操作图例:

\(\mathcal{Solution}\)

  和 CF1025G 有点类似。不妨令 \(1\) 为树的根,结点 \(u\) 的深度记为 \(d(u)\),\(d(1)=1\)。构造势能函数 \(\Phi:T\rightarrow\mathbb N_+\),有:

\[\Phi(T)=\sum_{u\in T}[2|d(u)]
\]

  先考虑目标状态,菊花图的势能显然为 \(1\)(根是花瓣)或 \(n-1\)(根是花蕊)。再观察一次操作带来的势能变化,发现仅有 \(a\) 结点的深度的奇偶性改变,那么:

\[\Delta\Phi=\pm1
\]

  记初始时树为 \(S\),可知答案为:

\[\min\{(n-1)-\Phi(S),\Phi(S)-1\}
\]

  复杂度 \(\mathcal O(n)\)。嗯唔,做完了 www!

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
} template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = ~ x + 1;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} const int MAXN = 2e5;
int n, ecnt, head[MAXN + 5], cnt[2]; struct Edge { int to, nxt; } graph[MAXN * 2 + 5]; inline void link ( const int s, const int t ) {
graph[++ ecnt] = { t, head[s] };
head[s] = ecnt;
} inline void solve ( const int u, const int f, const int dep ) {
++ cnt[dep & 1];
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ( v = graph[i].to ) ^ f ) {
solve ( v, u, dep + 1 );
}
}
} int main () {
n = rint ();
for ( int i = 1, u, v; i < n; ++ i ) {
u = rint (), v = rint ();
link ( u, v ), link ( v, u );
}
solve ( 1, 0, 0 );
printf ( "%d\n", ( cnt[0] < cnt[1] ? cnt[0] : cnt[1] ) - 1 );
return 0;
}

\(\mathcal{Details}\)

  势能分析的方法有点像数学上的特征值法。这种操作题没思路的时候不妨研究一下单次操作,构造出一个变化极为简单的“特征”来快速求解。

Solution -「CF 1375G」Tree Modification的更多相关文章

  1. Solution -「CF 1060F」Shrinking Tree

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的树,反复随机选取一条边,合并其两端两点,新点编号在两端两点等概率选取.问每个点留到最后的概率.    ...

  2. Solution -「CF 1491H」Yuezheng Ling and Dynamic Tree

    \(\mathcal{Description}\)   Link. 做题原因:题目名.   给定一个长度 \(n-1\) 的序列 \(\{a_2,a_3,\cdots,a_n\}\),其描述了一棵 \ ...

  3. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  4. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  5. Solution -「HDU 5498」Tree

    \(\mathcal{Description}\)   link.   给定一个 \(n\) 个结点 \(m\) 条边的无向图,\(q\) 次操作每次随机选出一条边.问 \(q\) 条边去重后构成生成 ...

  6. Solution -「CF 494C」Helping People

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\) 和 \(m\) 个操作,第 \(i\) 个操作有 \(p_i\) 的概率将 \([l_i,r_ ...

  7. Solution -「CF 793G」Oleg and Chess

    \(\mathcal{Description}\)   Link.   给一个 \(n\times n\) 的棋盘,其中 \(q\) 个互不重叠的子矩阵被禁止放棋.问最多能放多少个互不能攻击的车.   ...

  8. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  9. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

随机推荐

  1. 05.python解析式与生成器表达式

    解析式和生成器表达式 列表解析式 列表解析式List Comprehension,也叫列表推导式 #生成一个列表,元素0-9,将每个元素加1后的平方值组成新的列表 x = [] for i in ra ...

  2. 使用.NET 6开发TodoList应用(30)——实现Docker打包和部署

    系列导航及源代码 使用.NET 6开发TodoList应用文章索引 需求 .NET 6 Web API应用使用最多的场景是作为后端微服务应用,在实际的项目中,我们一般都是通过将应用程序打包成docke ...

  3. 达索CATIA许可证(License)管理使用和优化

    现下主流的V6版本CATIA,是由达索公司提供授权的浮动型License,其客户端通过企业内网从许可证服务器获得许可证,最少要有一个服务器端DS License Server提供一定数量的Licens ...

  4. 【Android】安卓中的存储

    [Android]安卓中的存储 1.存储在App内部 最简单的一种.在尝试过程中发现,手机中很多文件夹都没有权限读写.我们可以将我们需要写的文件存放到App中的files文件夹中,当然我们有权限在整个 ...

  5. Spark-寒假-实验1

    (1)切换到目录 /usr/bin: $ cd /usr/bin (2)查看目录/usr/local 下所有的文件: $cd /usr/local $ls   (3)进入/usr 目录,创建一个名为 ...

  6. 【解决了一个小问题】alpine镜像中,busybox的date命令获取昨天的日期

    直接上答案: date -d@"$(( `date +%s`-86400))" +"%Y-%m-%d"

  7. entity framework无法写入数据库.SaveChanges()失败

    参考https://stackoverflow.com/questions/26745184/ef-cant-savechanges-to-db/28256645 https://www.codepr ...

  8. 论文解读《The Emerging Field of Signal Processing on Graphs》

    感悟 看完图卷积一代.二代,深感图卷积的强大,刚开始接触图卷积的时候完全不懂为什么要使用拉普拉斯矩阵( $L=D-W$),主要是其背后的物理意义.通过借鉴前辈们的论文.博客.评论逐渐对图卷积有了一定的 ...

  9. Net6 DI源码分析Part2 Engine,ServiceProvider

    ServiceProvider ServiceProvider是对IServiceProvider实现,它有一个internal的访问修饰符描述的构造,并需要两个参数IServiceCollectio ...

  10. JAVA多线程学习十七 - 面试题

    前面针对多线程相关知识点进行了学习,那么我们来来看看常见的面试题: 1. 空中网面试题1 package com.kongzhongwang.interview; import java.util.c ...